如图.直线l与x轴交于点P(1.0).与x轴所夹的 锐角为θ.且tanθ=.直线l与抛物线 相交于 B (1) 求B.D两点的坐标.并用含a的代数式表示b和c, (2) ①若关于x的方程有实数根. 求此时抛物线的解析式, ②若抛物线与x轴交于A.C两点.顺次连接A.B.C.D得凸四边形ABCD.问四边形ABCD的面积有无最大值或最小值?若有.求出面积的最大值或最小值,若无.请说明理由. 查看更多

 

题目列表(包括答案和解析)

(本题12分)
如图,直线轴、轴分别交于A、B两点,动点P从A点开始在线段AO上以每秒3个长度单位的速度向原点O运动. 动直线EF从轴开始以每秒1个长度单位的速度向上平行移动(即EF∥轴),并且分别与轴、线段AB交于E、F点.连结FP,设动点P与动直线EF同时出发,运动时间为t秒.

(1)当t=1秒时,求梯形OPFE的面积;
(2)t为何值时,梯形OPFE的面积最大,最大面积是多少?
(3)设t的值分别取t1、t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2.试判断这两个三角形是否相似,请证明你的判断.

查看答案和解析>>

(本题12分)

如图,直线轴、轴分别交于A、B两点,动点P从A点开始在线段AO上以每秒3个长度单位的速度向原点O运动. 动直线EF从轴开始以每秒1个长度单位的速度向上平行移动(即EF∥轴),并且分别与轴、线段AB交于E、F点.连结FP,设动点P与动直线EF同时出发,运动时间为t秒.

(1)当t=1秒时,求梯形OPFE的面积;

(2)t为何值时,梯形OPFE的面积最大,最大面积是多少?

(3)设t的值分别取t1、t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2.试判断这两个三角形是否相似,请证明你的判断.

 

查看答案和解析>>

(本题12分)
如图,直线轴、轴分别交于A、B两点,动点P从A点开始在线段AO上以每秒3个长度单位的速度向原点O运动. 动直线EF从轴开始以每秒1个长度单位的速度向上平行移动(即EF∥轴),并且分别与轴、线段AB交于E、F点.连结FP,设动点P与动直线EF同时出发,运动时间为t秒.

(1)当t=1秒时,求梯形OPFE的面积;
(2)t为何值时,梯形OPFE的面积最大,最大面积是多少?
(3)设t的值分别取t1、t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2.试判断这两个三角形是否相似,请证明你的判断.

查看答案和解析>>

(本题12分) 如图,已知二次函数的图象与轴交于点,与轴交于点,其顶点为,且直线的解析式为

1.(1) 求二次函数的解析式.

2.(2) 求△ABC外接圆的半径及外心的坐标;

3.(3) 若点P是第一象限内抛物线上一动点,求四边形ACPB的面积最大值.

 

查看答案和解析>>

(本题12分) 如图,已知二次函数的图象与轴交于点,与轴交于点,其顶点为,且直线的解析式为

1.(1) 求二次函数的解析式.

2.(2) 求△ABC外接圆的半径及外心的坐标;

3.(3) 若点P是第一象限内抛物线上一动点,求四边形ACPB的面积最大值.

 

查看答案和解析>>


同步练习册答案