三个数3.2.中.最小的一个是 . 查看更多

 

题目列表(包括答案和解析)

对于三个数a、b、c, M{a,b,c}表示这三个数的平均数,min{a,b,c} 表示a、b、c这三个数中最小的数,如:,min{-1,2,3}=-1;M{ -1,2,a}==,min{-1,2,a}=
(1)填空:min{sin3°,cos45°,tan30°}=____;若min{2,2x+2,4-2x}=2,则x的取值范围是________;
(2)①若M{2,x+1,2x}=min{2,x+1,2x},那么x=____;
②根据①,你发现结论“若M{a,b,c}= min{a,b,c},那么____” (填a,b,c大小关系);
③运用②,填空:若M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y},则x+y=_____;
(3)在同一直角坐标系中作出函数y=x+1,y=(x-1)2,y=2-x的图象(不需列表,描点),通过图象,得出min{x+1,(x-1)2,2-x}最大值为_____。

查看答案和解析>>

(1)已知一个正方形,请你用直线尝试利用三种不同方法把它的面积分成四等份(等分时,不限定所用直线的条数),例如,图1与图2中等分的方法。请在图3、图4、图5中用与图1与图2不同的方法试一试(注意:等分的方法与图1、图2相同不计分,如果经过旋转后能与其中的一种情况相同视为同一种方法)。
(2)如示意图,一张长方形的纸片,其较长的边为8a,如剪去一个以较短边为边的正方形;再从余下的部分中剪去一个以这个小长方形的较短边为边的正方形;这样连续剪4次,最后余下的是一个小正方形,试求出原长方形的周长。

查看答案和解析>>

如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动。
(1)求AC、BC的长;
(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;
(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC是否相似,请说明理由;
(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由。

查看答案和解析>>

如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上),若⊙P过A、B、E三点(圆心在x轴上),抛物线经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1。
(1)求B点坐标;
(2)求证:ME是⊙P的切线;
(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,
①求△ACQ周长的最小值;
②若FQ=t,S△ACQ=S,直接写出S与t之间的函数关系式。

查看答案和解析>>

如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上),若⊙P过A、B、E三点(圆心在x轴上),抛物线经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1。
(1)求B点坐标;
(2)求证:ME是⊙P的切线;
(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,①求△ACQ周长的最小值;②若FQ=t,S△ACQ=s,直接写出s与t之间的函数关系式。

查看答案和解析>>


同步练习册答案