已知抛物线y=―x2+2mx―m2―m+3与y轴的交点在原点的上方. (1)试证明:该抛物线的顶点一定在直线y=―x+3上 (2)设该抛物线与x轴交于M.N两点.当OM·ON=3且OM≠ON时.求出这条抛物线的解析式 查看更多

 

题目列表(包括答案和解析)

已知抛物线y=-x2+2mx-m2-m+3
(1)证明抛物线顶点一定在直线y=-x+3上;
(2)若抛物线与x轴交于M、N两点,当OM•ON=3,且OM≠ON时,求抛物线的解析式;
(3)若(2)中所求抛物线顶点为C,与y轴交点在原点上方,抛物线的对称轴与x轴交于点B,直线y=-x+3与x轴交于点A.点P为抛物线对称轴上一动点,过点P作PD⊥AC,垂足D在线段AC上.试问:是否存在点P,使S△PAD=
14
S△ABC?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

已知抛物线y=-x2+2mx-m2-m+3
(1)证明抛物线顶点一定在直线y=-x+3上;
(2)若抛物线与x轴交于M、N两点,当OM•ON=3,且OM≠ON时,求抛物线的解析式;
(3)若(2)中所求抛物线顶点为C,与y轴交点在原点上方,抛物线的对称轴与x轴交于点B,直线y=-x+3与x轴交于点A.点P为抛物线对称轴上一动点,过点P作PD⊥AC,垂足D在线段AC上.试问:是否存在点P,使S△PAD=S△ABC?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

已知抛物线y=-x2+2mx-m2-m+3
(1)证明抛物线顶点一定在直线y=-x+3上;
(2)若抛物线与x轴交于M、N两点,当OM•ON=3,且OM≠ON时,求抛物线的解析式;
(3)若(2)中所求抛物线顶点为C,与y轴交点在原点上方,抛物线的对称轴与x轴交于点B,直线y=-x+3与x轴交于点A.点P为抛物线对称轴上一动点,过点P作PD⊥AC,垂足D在线段AC上.试问:是否存在点P,使S△PAD=数学公式S△ABC?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

已知抛物线y=-x2+2mx-m2-m+3
(1)证明抛物线顶点一定在直线y=-x+3上;
(2)若抛物线与x轴交于M、N两点,当OM•ON=3,且OM≠ON时,求抛物线的解析式;
(3)若(2)中所求抛物线顶点为C,与y轴交点在原点上方,抛物线的对称轴与x轴交于点B,直线y=-x+3与x轴交于点A.点P为抛物线对称轴上一动点,过点P作PD⊥AC,垂足D在线段AC上.试问:是否存在点P,使S△PAD=
1
4
S△ABC?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

已知二次函数y=x2-2mx+m2-1.
(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;
(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;
(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.

查看答案和解析>>


同步练习册答案