一次函数中.当-3≤x≤1时.对应的y值为1≤y≤9.求k.b的值 查看更多

 

题目列表(包括答案和解析)

一次函数y=kx+b中,当-3≤x≤1时,对应的函数值y为1≤y≤9,则k+b的值为

[  ]

A.9或1
B.5或-5
C.-5或1
D.5或1

查看答案和解析>>

如图,在平行四边形ABCD中,AB=5,BC=10,FAD的中点,CEABE,设∠ABCα(60°≤α<90°).

(1)当α=60°时,求CE的长;

(2)当60°<α<90°时,

①是否存在正整数k,使得∠EFDkAEF?若存在,求出k的值;若不存在,请说明理由.

②连接CF,当CE2CF2取最大值时,求tan∠DCF的值.

分析 (1)利用60°角的正弦值列式计算即可得解;

(2)①连接CF并延长交BA的延长线于点G,利用“角边角”证明△AFG和△CFD全等,根据全等三角形对应边相等可得CFGFAGCD,再利用直角三角形斜边上的中线等于斜边的一半可得EFGF,再根据ABBC的长度可得AGAF,然后利用等边对等角的性质可得∠AEF=∠G=∠AFG根据三角形的一个外角等于与它不相邻的两个内角的和可得∠EFC=2∠G,然后推出∠EFD=3∠AEF,从而得解;

②设BEx,在Rt△BCE中,利用勾股定理表示出CE2,表示出EG的长度,在Rt△CEG中,利用勾股定理表示出CG2,从而得到CF2,然后相减并整理,再根据二次函数的最值问题解答.

查看答案和解析>>

有一个运算装置,当输入值为x时,其输出值为y,且y是x的二次函数,已知输入值为-2,0,1时,相应的输出值分别为5,-3,-4.

    (1)求此二次函数的解析式并写出对称轴方程、顶点坐标;

    (2)在所给的如图坐标系中画出这个二次函数的图象,并根据图象写出当输出值y为正数时输入值x的取值范围.

查看答案和解析>>

利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出1吨建筑材料共需支付厂家及其他费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).

(1)当每吨售价是240元时,计算此时的月销售量;

(2)求出y与x的二次函数关系式(不要求写出x的取值范围);

(3)请把(2)中的二次函数配方成y=a(x-h)2+k的形式,并据此说明,该经销店要获得最大月利润,售价应定为每吨多少元;

(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.

查看答案和解析>>

我市某工艺厂为配合奥运会,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:

销售单价x(元/件)

……

30

40

50

60

……

每天销售量y(件)

……

500

400

300

200

……

(1)把上表中xy的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想yx的函数关系,并求出函数关系式;

(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)

(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?

分析 (1)从表格中的数据我们可以看出当x增加10时,对应y的值减小100,所以yx之间可能是一次函数的关系,我们可以根据图象发现这些点在一条直线上,所以yx之间是一次函数的关系,然后设出一次函数关系式,求出其关系式.

(2)利用二次函数的知识求最大值.

查看答案和解析>>


同步练习册答案