若抛物线y=ax2+bx+c过y轴上的一点C(0,2),且与x轴只有一个交点A.又b+2ac=0.另有直线y=x+m过A点且与抛物线相交于B点.与y轴相交于P点.⑴求直线与抛物线的解析式.并画草图,⑵连结AC.BC.试判断ΔABC的形状,⑶以BC为直径作⊙M.过P作直线PN切⊙M于N.并与过点B且平行于y轴的直线交于Q.求PN.PQ的值. 查看更多

 

题目列表(包括答案和解析)

设抛物线yax2bx-2与x轴交于两个不同的点A(-1,0)、B(m,0),与y轴交于点C.且∠ACB=90°.

(1)求m的值和抛物线的解析式;

(2)已知点D(1,n)在抛物线上,过点A的直线yx+1交抛物线于另一点E.若点P在x轴上,以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标.

(3)在(2)的条件下,△BDP的外接圆半径等于________.

查看答案和解析>>

设抛物线y=ax2+bx-2与x轴交于两个不同的点A(-1,0)、B(m,0),与y轴交于点C.且∠ACB=90°.

(1)求m的值和抛物线的解析式;

(2)已知点D(1,n)在抛物线上,过点A的直线y=x+1交抛物线于另一点E.若点P在x轴上,以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标.

(3)在(2)的条件下,△BDP的外接圆半径等于________.

查看答案和解析>>

已知抛物线y=ax2+bx+c的图象交x轴于点A(x0,0)和点B(2,0),与y轴的正半轴交于点C,其对称轴是直线x=-1,tan∠BAC=2,点A关于y轴的对称点为点D.

(1)确定A.C.D三点的坐标;

(2)求过B.C.D三点的抛物线的解析式;

(3)若过点(0,3)且平行于x轴的直线与(2)小题中所求抛物线交于M.N两点,以MN为一边,抛物线上任意一点P(x,y)为顶点作平行四边形,若平行四边形的面积为S,写出S关于P点纵坐标y的函数解析式.

(4)当<x<4时,(3)小题中平行四边形的面积是否有最大值,若有,请求出,若无,请说明理由.

查看答案和解析>>

(12分)已知抛物线yax2bxcx轴交于AB两点,与y轴交于点C,其中点Bx轴的正半轴上,点Cy轴的正半轴上,线段OBOC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.

1.(1)求ABC三点的坐标;

2.(2)求此抛物线的表达式;

3.(3)连接ACBC,若点E是线段AB上的一个动点(与点A、点B不重合),过点EEFACBC于点F,连接CE,设AE的长为m,△CEF的面积为S,求Sm之间的函数关系式,并写出自变量m的取值范围;

4.(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

 

查看答案和解析>>

已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB.OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.

1.求A、B、C三点的坐标;

2.求此抛物线的表达式

3.连接AC、BC,若点E是线段AB上的一个动点(与点A.点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;

4.在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由

 

查看答案和解析>>


同步练习册答案