如图.已知△ABC.∠ACB=90º.AC=BC.点E.F在AB上.∠ECF=45º. (1)求证:△ACF∽△BEC (2)设△ABC的面积为S.求证:AF·BE=2S . 查看更多

 

题目列表(包括答案和解析)

(本题满分10分)如图,阳春三月里小黄同学在操场上放风筝,风筝从A处起飞,几分钟后便飞到C处,此时,在AQ的延长线上B处的小宋同学发现自己的位置与风筝和旗杆PQ的顶点P在同一直线上.

 1. (1)已知旗杆高10米,若在B处测得旗杆顶点P的仰角为30°,在A处测得点P的仰角为45°,试求A、B之间的距离.

  2. (2)此时,在A处背向旗杆又测得风筝的仰角为75°,若将绳子在空中视为一条线段,求绳子的长度AC(结果保留根号).

 

查看答案和解析>>

(本题满分10分)如图,△ABC的三个顶点都在格点上.A(-1,3),  B(-1,-1), C(-3,-3)

1.(1)画出△ABC绕点A逆时针旋转90°所得图形△AB'C'

2.(2)直接写出△AB'C'外接圆的圆心D坐标     

3.(3)求∠A C'B'的正切值.

 

查看答案和解析>>

附加题(共10分)在答题卡上相应题目的答题区域内作答.

友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况.如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分最多不超过90分;如果你全卷总分已经达到或超过90分,则本题的得分不计入全卷总分.

1.(5分)计算:         

2.(5分)如图,已知直线,则   度.

 

查看答案和解析>>

(本题满分10分)

如图,将OA = 6,AB = 4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.

(1)点B的坐标为   ;用含t的式子表示点P的坐标为     ;(3分)

(2)记△OMP的面积为S,求S与t的函数关系式(0 < t < 6);并求t为何值时,S有最大值?(4分)

(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由.(3分)

 

查看答案和解析>>

(本题8分)小明上午7:05从家里出发以均匀的速度步行上学,途经少年宫时走了步,用时10分钟,7:30到达学校.为了估测路程等有关数据,小明特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.

【小题1】(1) 小明上学步行的平均速度是  米/分;小明家和少年宫之间的路程是  米;少年宫和学校之间的路程是  米.
【小题2】(2) 下午4:00,小明从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留.问:
① 小明到家的时间是下午几时?
② 小明回家过程中,离家的路程s(米)与时间t(分)之间的函数关系如图,请写出点B的坐标,并求出线段CD所在直线的函数解析式.

查看答案和解析>>


同步练习册答案