已知直线l:与函数y =的图象交于点A(-1.m) (1) 求m, (2) 当k = * 时.则直线l经过第一.三.四象限(任写一个符合题意的值即可), 中的直线l的解析式和它与两坐标轴围成的三角形面积. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

在平面直角坐标系xOy中,抛物线的解析式是y =+1,点C的坐标为(–4,0),平行四边形OABC的顶点AB在抛物线上,AB与y轴交于点M,已知点Q(xy)在抛物线上,点P(t,0)在x轴上.

 (1) 写出点M的坐标;

 (2) 当四边形CMQP是以MQPC为腰的梯形时.

① 求t关于x的函数解析式和自变量x的取值范围;

② 当梯形CMQP的两底的长度之比为1:2时,求t的值.

 

查看答案和解析>>

(本小题满分12分)
在平面直角坐标系xOy中,抛物线的解析式是y =+1,点C的坐标为(–4,0),平行四边形OABC的顶点AB在抛物线上,AB与y轴交于点M,已知点Q(xy)在抛物线上,点P(t,0)在x轴上.

(1) 写出点M的坐标;
(2) 当四边形CMQP是以MQPC为腰的梯形时.
① 求t关于x的函数解析式和自变量x的取值范围;
② 当梯形CMQP的两底的长度之比为1:2时,求t的值.

查看答案和解析>>

(本小题满分12分)
在平面直角坐标系xOy中,抛物线的解析式是y =+1,点C的坐标为(–4,0),平行四边形OABC的顶点AB在抛物线上,AB与y轴交于点M,已知点Q(xy)在抛物线上,点P(t,0)在x轴上.

(1) 写出点M的坐标;
(2) 当四边形CMQP是以MQPC为腰的梯形时.
① 求t关于x的函数解析式和自变量x的取值范围;
② 当梯形CMQP的两底的长度之比为1:2时,求t的值.

查看答案和解析>>

(本小题满分12分)

在平面直角坐标系xOy中,抛物线的解析式是y =+1,点C的坐标为(–4,0),平行四边形OABC的顶点AB在抛物线上,AB与y轴交于点M,已知点Q(xy)在抛物线上,点P(t,0)在x轴上.

 (1) 写出点M的坐标;

 (2) 当四边形CMQP是以MQPC为腰的梯形时.

① 求t关于x的函数解析式和自变量x的取值范围;

② 当梯形CMQP的两底的长度之比为1:2时,求t的值.

 

查看答案和解析>>

(本小题满分12分)

已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm.

如图(2),△DEF从图(1)的位置出发,以1 cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2 cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).

解答下列问题:

(1)当t为何值时,点A在线段PQ的垂直平分线上?

(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由.

(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.

 

查看答案和解析>>


同步练习册答案