题目列表(包括答案和解析)
已知ΔABC∽ΔDEF,AB:DE=4:1,那么需要_____个ΔDEF才能把ΔABC填满。
原始问题:已知矩形A的长、宽分别是2和1,那么是否存在另一个矩形B,它的周长和面积分别是矩形A的周长和面积的2倍?
对上述问题,小明同学从“图形”的角度,利用函数知识给予了解决。
小明论证的过程开始是这样的:如果用x、y分别表示矩形的长和宽,那么矩形B满足x+y=6,xy=4。请你按照小明的论证思路完成后面的论证过程。
新的问题:已知矩形A的长和宽分别是2和1,那么是否存在一个矩形C,它的周长和面积分别是矩形A的周长和面积的一半?
小明认为这个问题是肯定的,你同意小明的观点吗?为什么?
![]()
我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等. 那么在什么情况下,它们会全等?
(1)阅读与证明:
对于这两个三角形均为直角三角形,显然它们全等.
对于这两个三角形均为钝角三角形,可证它们全等(证明略).
对于这两个三角形均为锐角三角形,它们也全等,可证明如下:
已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1C1,∠C=∠C1.
求证:△ABC≌△A1B1C1. (请你将下列证明过程补充完整)
证明:分别过点B,B1作BD⊥CA于D,B1D1⊥C1A1于D1.
则∠BDC=∠B1D1C1=90°,
∵BC=B1C1,∠C=∠C1,
∴△BCD≌△B1C1D1,
∴BD=B1D1.
______________________________。
(2)归纳与叙述:
由(1)可得到一个正确结论,请你写出这个结论.
![]()
我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等. 那么在什么情况下,它们会全等?
(1)阅读与证明:
对于这两个三角形均为直角三角形,显然它们全等.
对于这两个三角形均为钝角三角形,可证它们全等(证明略).
对于这两个三角形均为锐角三角形,它们也全等,可证明如下:
已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1C1,∠C=∠C1.
求证:△ABC≌△A1B1C1. (请你将下列证明过程补充完整)
证明:分别过点B,B1作BD⊥CA于D,B1D1⊥C1A1于D1.
则∠BDC=∠B1D1C1=90°,
∵BC=B1C1,∠C=∠C1,
∴△BCD≌△B1C1D1,
∴BD=B1D1.
______________________________。
(2)归纳与叙述:
由(1)可得到一个正确结论,请你写出这个结论.
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com