23.是等腰梯形-------------------------------- 已知:梯形ABCD.AD∥BC且∠B=∠C(或∠A=∠D)------------ 求证:梯形ABCD是等腰梯形----------------------- 证明一:过点A作AE∥DC.交BC于E---------- ∵AD∥BC AE∥DC ∴四边形AECD是平行四边形.∴∠AEB=∠C. AE=DC------------------- ∵∠B=∠C ∴∠AEB=∠B--------------------------- ∴AB=AE----------------------------- ∴AB=DC ∴梯形ABCD是等腰梯形--------------------- 证明二:过A.D两点分别作AE⊥BC.DF⊥BC垂足为E.F ∵AE⊥BC.DF⊥BC ∴AE∥DF且∠AEB=∠DFC ∵AD∥BC ∴四边形AEFD是平行四边形 ∴AE=DF ∵∠AEB=∠DFC ∠B=∠C ∴△AEB≌△DFC ∴AB=DC ∴梯形ABCD是等腰梯形 证明三:延长BA.CD交于E点 ∵∠B=∠C ∴BE=CE ∴AD∥BC ∴∠EAD=∠B.∠EDA=∠C ∴∠EAD=∠EDA ∴AE=DE ∴AB=DC ∴梯形ABCD是等腰梯形 查看更多

 

题目列表(包括答案和解析)

等腰梯形ABCD中,AD∥BC,AB=CD,面积S=9,建立如图所示的直角坐标系,已知A(1,0)、B(0,3).
(1)求C、D两点坐标;
(2)取点E(0,1),连接DE并延长交AB于F,求证:DF⊥AB;
(3)将梯形ABCD绕A点旋转180°到AB′C′D′,求对称轴平行于y轴,且经过A、B′、C′三点的抛物线的解析式;
(4)是否存在这样的直线,满足以下条件:①平行于x轴,②与(3)中的抛物线有两个交点,且这两交点和(3)中的抛物线的顶点恰是一个等边三角形的三个顶点?若存在,求出这个等边三角形的面积;精英家教网若不存在,请说明理由.

查看答案和解析>>

等腰梯形ABCD中,AD∥BC,AB=CD,面积S=9,建立如图所示的直角坐标系,已知A(1,0)、B(0,3).
(1)求C、D两点坐标;
(2)取点E(0,1),连接DE并延长交AB于F,求证:DF⊥AB;
(3)将梯形ABCD绕A点旋转180°到AB′C′D′,求对称轴平行于y轴,且经过A、B′、C′三点的抛物线的解析式;
(4)是否存在这样的直线,满足以下条件:①平行于x轴,②与(3)中的抛物线有两个交点,且这两交点和(3)中的抛物线的顶点恰是一个等边三角形的三个顶点?若存在,求出这个等边三角形的面积;若不存在,请说明理由.

查看答案和解析>>

等腰梯形ABCD中,AD∥BC,AB=CD,面积S=9,建立如图所示的直角坐标系,已知A(1,0)、B(0,3).
(1)求C、D两点坐标;
(2)取点E(0,1),连接DE并延长交AB于F,求证:DF⊥AB;
(3)将梯形ABCD绕A点旋转180°到AB′C′D′,求对称轴平行于y轴,且经过A、B′、C′三点的抛物线的解析式;
(4)是否存在这样的直线,满足以下条件:①平行于x轴,②与(3)中的抛物线有两个交点,且这两交点和(3)中的抛物线的顶点恰是一个等边三角形的三个顶点?若存在,求出这个等边三角形的面积;若不存在,请说明理由.

查看答案和解析>>

已知:点P(m,2)是某反比例函数的图象与直线y=kx-7的交点,M是该双曲线上的一点,MN⊥y精英家教网轴于N,且S△MON=6
(1)分别求出这两个函数解析式;
(2)如果等腰梯形ABCD的顶点A、B在这个一次函数的图象上,顶点C、D在这个反比例函数的图象上,两底AD、BC与y轴平行,点A和点B的横坐标分别为a和a+2,求a的值;
(3)求出等腰梯形ABCD的面积.

查看答案和解析>>

28、已知:在等腰梯形ABCD中,AD∥BC,直线MN是梯形的对称轴,P是MN上的一点.直线BP交直线DC于F,交CE于E,且CE∥AB.
(1)若点P在梯形的内部,如图①.求证:BP2=PE•PF;
(2)若点P在梯形的外部,如图②,那么(1)的结论是否成立?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>


同步练习册答案