已知在半径为2的⊙O中,内接三角形ABC的边AB=2,则∠C的度数为( ). A.60° B.30° C.60°或120° D.30°或150° 查看更多

 

题目列表(包括答案和解析)

已知在半径为2的⊙O中,内接三角形ABC的边,则∠C的度数为(    ).

   A.60°     B.30°      C.60°或120°      D.30°或150°

查看答案和解析>>

已知:如图,边长为2
3
的等边三角形ABC内接于⊙O,点D在
AC
上运动,但与A、C两点不精英家教网重合,连接AD并延长交BC的延长结于P.
(1)求⊙O的半径;
(2)设AD为x,AP为y,写出y与x的函数关系式及自变量x的取值范围;
(3)D点在运动过程中是否存在这样的位置,使得△BDP成为以DB、DP为腰的等腰三角形?若存在,请你求出此时AD的值;若不存在,请说明理由.

查看答案和解析>>

在Rt△ABC中,已知两直角边的长分别为5cm、12cm,则该直角三角形外接圆的半径与内切圆的半径分别为(  )

A.6cm和2cm        B.7.5cm和4cm

C.6.5cm和2cm      D.6.5cm和3cm

查看答案和解析>>

阅读材料:
已知,如图(1),在面积为S的△ABC中, BC=a,AC="b," AB=c,内切圆O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形.
.


(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;
(2)理解应用:如图(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1与⊙O2分别为△ABD与△BCD的内切圆,设它们的半径分别为r1和r2,求的值.

查看答案和解析>>

方案设计:儿童公园有一块半圆形空地,如图11所示,根据需要欲在此半圆内划出一个三角形区域作为健身场地,其中内接于此三角形的矩形区域为儿童游乐场,已知半圆的直径AB=100米,若使三角形的顶点C在半圆上,且AC=80米.
那么请你帮设计人员计算一下:△ABC中,C到AB的距离是多少米?如果使矩形游乐场DEFN面积最大,此矩形的高DN应为何值?
在实际施工时,发现在AB上距B点18.5米处有一棵古树,那么这棵树是否位于最大游乐场的边上?若在,为保护古树,请你设计出另外的方案以避开古树.

查看答案和解析>>


同步练习册答案