解直角三角形 直角三角形除了直角外.还有五个基本元素(两条直角边和斜边.两个锐角).如果知道了其中两个元素.那么就可以求出它的另外三个元素.由直角三角形的已知元素求出它的未知元素.叫做解直角三角形. 解直角三角形主要关系式为: ①两锐角间的关系: ②三边之间的关系:, ③边.角间的关系:,,, 例1.求的值. 例2.已知中....那么,. 练习:1.在中..则是的 . 查看更多

 

题目列表(包括答案和解析)

等边三角形是大家熟悉的特殊三角形,除了以前我们所知道的它的一些性质外,它还有很多其它的性质,我们来研究下面的问题:

如图1,点P是等边△ABC的中心,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,易证:BE+CF+AD=EC+AF+BD
问题提出:如图2,若点P是等边△ABC内任意一点,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,上述结论还成立吗?
为了解决这个问题,现给予证明过程:
证明:连接PA、PB、PC,在Rt△PBE和Rt△PEC中,PB2=PE2+BE2,PC2=PE2+CE2,∴PB2-PC2=BE2-CE2
同理可证:PC2-PA2=CF2-AF2,PA2-PB2=AD2-BD2
将上述三式相加得:BE2-CE2+CF2-AF2+AD2-BD2=0,即:(BE+CE)(BE-CE)+(CF+AF)(CF-AF)+(AD+BD)(AD-BD)=0
∵△ABC是等边三角形,设边长为a.
∴BE+CE=CF+AF=AD+BD=a;
∴a(BE-CE)+a(CF-AF)+a(AD-BD)=0;
∴BE-CE+CF-AF+AD-BD=0;
∴BE+CF+AD=EC+AF+BD.
问题拓展:如图3,若点P是等边△ABC的边上任意一点,PD⊥AB于D,PF⊥AC于F,上述结论还成立吗?若成立,请直接写出结论,不用证明;若不成立,请说明理由.
问题解决:
如图4,若点P是等边△ABC外任意一点,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,上述结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.

查看答案和解析>>

等边三角形是大家熟悉的特殊三角形,除了以前我们所知道的它的一些性质外,它还有很多其它的性质,我们来研究下面的问题:

如图1,点P是等边△ABC的中心,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,易证:BE+CF+AD=EC+AF+BD
问题提出:如图2,若点P是等边△ABC内任意一点,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,上述结论还成立吗?
为了解决这个问题,现给予证明过程:
证明:连接PA、PB、PC,在Rt△PBE和Rt△PEC中,PB2=PE2+BE2,PC2=PE2+CE2,∴PB2-PC2=BE2-CE2
同理可证:PC2-PA2=CF2-AF2,PA2-PB2=AD2-BD2
将上述三式相加得:BE2-CE2+CF2-AF2+AD2-BD2=0,即:(BE+CE)(BE-CE)+(CF+AF)(CF-AF)+(AD+BD)(AD-BD)=0
∵△ABC是等边三角形,设边长为a.
∴BE+CE=CF+AF=AD+BD=a;
∴a(BE-CE)+a(CF-AF)+a(AD-BD)=0;
∴BE-CE+CF-AF+AD-BD=0;
∴BE+CF+AD=EC+AF+BD.
问题拓展:如图3,若点P是等边△ABC的边上任意一点,PD⊥AB于D,PF⊥AC于F,上述结论还成立吗?若成立,请直接写出结论,不用证明;若不成立,请说明理由.
问题解决:
如图4,若点P是等边△ABC外任意一点,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,上述结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.

查看答案和解析>>

4、有人说“学习相似三角形的判定要类比三角形全等的判定,这样便于理解它们之间的联系与区别,易于记忆,方便应用.”你认为如何?能试着总结这个问题吗?请你填一填:
全等三角形的判定方法有:
ASA
AAS
SAS
SSS
,直角三角形除此之外再加
HL

相似三角形的判定除了可以运用相似三角形的定义外,我们还学习了一种简单的方法:
两角
对应相等的两个三角形相似.

查看答案和解析>>

有人说“学习相似三角形的判定要类比三角形全等的判定,这样便于理解它们之间的联系与区别,易于记忆,方便应用.”你认为如何?能试着总结这个问题吗?请你填一填:
全等三角形的判定方法有:______,______,______,______,直角三角形除此之外再加______.
相似三角形的判定除了可以运用相似三角形的定义外,我们还学习了一种简单的方法:______对应相等的两个三角形相似.

查看答案和解析>>

有人说“学习相似三角形的判定要类比三角形全等的判定,这样便于理解它们之间的联系与区别,易于记忆,方便应用.”你认为如何?能试着总结这个问题吗?请你填一填:
全等三角形的判定方法有:                ,直角三角形除此之外再加   
相似三角形的判定除了可以运用相似三角形的定义外,我们还学习了一种简单的方法:    对应相等的两个三角形相似.

查看答案和解析>>


同步练习册答案