解:(1)根据解答者的性别.年龄实事求是地代入即可. (2)把p=120代入p=0.01x2+0.05x+107,得 120=0.01x2+0.05x+107.解得x1≈-39,x2=34. 故该女性的年龄大约为34岁. (3)把p=130代入p=0.006x2-0.02x+120,得 130=0.006x2-0.02x+120. 解得x1≈-39,x2=43. 故该男性的年龄大约为43岁. 查看更多

 

题目列表(包括答案和解析)

根据|a|≥0解答下列各题.
(1)当x为何值时,|x-2|有最小值?最小值是多少?
(2)当x为何值时,3-|x-4|有最大值?最大值是多少?

查看答案和解析>>

(2011•清流县质检)星期天,小明在解答下列题目时卡壳了.
题目1:如图①,在△ABC中,AC=BC,∠ACB=90°,O为△ABC内的一点,OC=1,OA=
3
,OB=
5
.求∠AOC的度数.
小明去请教小颖正在解答下列题目.
题目2:如图②,点O是等边三角形ABC内的一点,将△BCO绕C顺时针方向旋转60°得到△ADC,连接OD.
(1)试判断△COD的形状,并说明理由;
(2)当∠COB=150°时,试判断△AOD的形状,并写出OA、OB、OC三者之间的等量关系式.
小颖说:“等等,等我做完了,我们一起来看.”小明看完,小颖做完后高兴地说:“哈哈,太好了,我会了.”聪明的同学,你能先解答完题目2,再根据解答所得到的启迪来完成题目1吗?写出你的解答过程.

查看答案和解析>>

星期天,小明在解答下列题目时卡壳了.
题目1:如图①,在△ABC中,AC=BC,∠ACB=90°,O为△ABC内的一点,OC=1,OA=数学公式,OB=数学公式.求∠AOC的度数.
小明去请教小颖正在解答下列题目.
题目2:如图②,点O是等边三角形ABC内的一点,将△BCO绕C顺时针方向旋转60°得到△ADC,连接OD.
(1)试判断△COD的形状,并说明理由;
(2)当∠COB=150°时,试判断△AOD的形状,并写出OA、OB、OC三者之间的等量关系式.
小颖说:“等等,等我做完了,我们一起来看.”小明看完,小颖做完后高兴地说:“哈哈,太好了,我会了.”聪明的同学,你能先解答完题目2,再根据解答所得到的启迪来完成题目1吗?写出你的解答过程.

查看答案和解析>>

星期天,小明在解答下列题目时卡壳了.
题目1:如图①,在△ABC中,AC=BC,∠ACB=90°,O为△ABC内的一点,OC=1,OA=,OB=.求∠AOC的度数.
小明去请教小颖正在解答下列题目.
题目2:如图②,点O是等边三角形ABC内的一点,将△BCO绕C顺时针方向旋转60°得到△ADC,连接OD.
(1)试判断△COD的形状,并说明理由;
(2)当∠COB=150°时,试判断△AOD的形状,并写出OA、OB、OC三者之间的等量关系式.
小颖说:“等等,等我做完了,我们一起来看.”小明看完,小颖做完后高兴地说:“哈哈,太好了,我会了.”聪明的同学,你能先解答完题目2,再根据解答所得到的启迪来完成题目1吗?写出你的解答过程.

查看答案和解析>>

解答题

解答应写出必要的文字说明,证明过程或演算步骤.

一艘轮船以20海里/时的速度由西向东航行,途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属台风区,当轮船到A处时,测得台风中心移到位于点A正南方向B处,且AB=100海里.

(1)

若这艘轮船自A处按原速度和方向继续航行,在途中会不会遇到台风?若会,试求轮船最初遇到台风的时间;若不会,说明理由;

(2)

现轮船自A处立即提高船速,向位于北偏东60° 方向,相距60海里的D港驶去,为使台风到来之前,到达D港,问船速至少应提高多少(提高的船速取整数,)?

查看答案和解析>>


同步练习册答案