如图.在四边形ABCD中.四条边均大于2.以1为半径.分别以A.B.C.D为圆心作圆.则图中阴影部分的面积为 . 查看更多

 

题目列表(包括答案和解析)

如图,在四边形ABCD中,四条边均大于2,以1为半径,分别以A、B、C、D为圆心作圆,则图中阴影部分的面积为________.

查看答案和解析>>

如图所示的两个图形,一个是平行四边形ABCD,另一个是以O点为圆心的圆,在图中作一条直线,使这条直线把平行四边形ABCD与圆O各分成两部分形状、大小均相同.

查看答案和解析>>

某班研究性学习小组在研究用一条直线等分几何图形的面积时,发现如下事实:
㈠如图①,对于三角形ABC,取BC边中点D,过A、D两点画一条直线即可.
理由:∵△ABD与△ADC等底等高,
∴S△ABD=S△ADC
㈡如图②,对于平行四边形ABCD,连接两对角线AC、BD交于点O,过O点任作一直线MN即可.(不妨设与AD、BC分别交于点M、N)
理由:∵四边形ABCD是平行四边形,
∴AO=CO,AD∥BC.∴∠MAO=∠NCO.
∴易得S△AOM=S△CON
∴S四边形ABNM=S四边形CDMN
受上面的启发,请你研究一下下面的问题:
某村王大爷家有一块梯形形状的稻田(如图③所示),已知:上底AD=40米,下底BC=60米,高h=30米,王大爷准备把这块梯形形状的稻田平均分给两个儿子(面积相等).
(1)分割方法有许多种,请你帮助王大爷设计两种不同的分割方案,在图③、图④中分别画出来,并说明理由;
(2)为了尽可能减少筑砌分割田坎的劳动量(只考虑田坎长度对工时的影响,不计其它因素),问:田坎应砌在什么位置最短?请画出图形,并求出此时分割线的长度.

查看答案和解析>>

某班研究性学习小组在研究用一条直线等分几何图形的面积时,发现如下事实:
㈠如图①,对于三角形ABC,取BC边中点D,过A、D两点画一条直线即可.
理由:∵△ABD与△ADC等底等高,
∴S△ABD=S△ADC
㈡如图②,对于平行四边形ABCD,连接两对角线AC、BD交于点O,过O点任作一直线MN即可.(不妨设与AD、BC分别交于点M、N)
理由:∵四边形ABCD是平行四边形,
∴AO=CO,ADBC.∴∠MAO=∠NCO.
∴易得S△AOM=S△CON
∴S四边形ABNM=S四边形CDMN
受上面的启发,请你研究一下下面的问题:
某村王大爷家有一块梯形形状的稻田(如图③所示),已知:上底AD=40米,下底BC=60米,高h=30米,王大爷准备把这块梯形形状的稻田平均分给两个儿子(面积相等).
(1)分割方法有许多种,请你帮助王大爷设计两种不同的分割方案,在图③、图④中分别画出来,并说明理由;
(2)为了尽可能减少筑砌分割田坎的劳动量(只考虑田坎长度对工时的影响,不计其它因素),问:田坎应砌在什么位置最短?请画出图形,并求出此时分割线的长度.

查看答案和解析>>

小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:

(1)如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连接AE并延长交BC的延长线于点F,求证:S四边形ABCD=S△ABF(S表示面积)
(2)如图2:在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.小明将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,请问当直线MN在什么位置时,△MON的面积最小,并说明理由.
(3)利用(2)的结论解决下列问题:
我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.(如图3)若O是△ABC的重心,连结AO并延长交BC于D,则
AO
AD
=
2
3
,这样面积比就有一些“漂亮”结论,利用这些性质解决以下问题.
若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图4),S四边形BCHG,S△AGH分别表示四边形BCHG和△AGH的面积,试探究
S四边形BCHG
S△AGH
的最大值.

查看答案和解析>>


同步练习册答案