(1) C(2,0)设抛物线的解析式y=a 因为C(2,0)在抛物线上 所以2=a 解之得a=-1 所以,抛物线为 y=- 查看更多

 

题目列表(包括答案和解析)

有一座抛物线型拱桥(图1),其水面宽为18米,拱顶离水面AB的距离为9米.有一货船要将打包好的一些长方体物品(长、宽、高分别是4米、3米、8米)放在甲板上运过拱桥(假设载货后船的甲板与水面大致平齐).
(1)求抛物线的解析式.
(2)若货物堆放方式的正视图如下(图2),问船能载货物通过拱桥吗?通过计算说明你的结论.
精英家教网
(3)若改变货物的堆放方式(正视图如图甲、图乙).问图甲和图乙能否载货物通过拱桥?假设此货船的甲板只能提供宽13米,长18米的置物空间,为了尽可能地多装这些长方体物品(略去其它因素),你会选用图甲和图乙中的哪一种载物方式,为什么?
精英家教网

查看答案和解析>>

如图,抛物线的顶点为D,与x轴交于点A,B,与y轴交于点C,且OB = 2OC= 3.

   (1)求a,b的值;

   (2)将45°角的顶点P在线段OB上滑动(不与点B重合),该角的一边过点D,另一边与BD交于点Q,设P(x,0),y2=DQ,试求出y2关于x的函数关系式;

(3)在同一平面直角坐标系中,两条直线x = m,x = m+分别与抛物线y1交于点E,G,与y2的函数图象交于点F,H.问点E、F、H、G围成四边形的面积能否为?若能,求出m的值;若不能,请说明理由.

【解析】通过B(3,0),C(0,)两点,求出拋物线的解析式,

(2)作DN⊥AB,由y1求出AB=4,DN=BN=2,DB=2,由根据勾股定理得jPD2-(1-x)2=4,又因为△MPQ∽ △MBP所以kPD2=DQ´DB=y2´2,由j、k得y2x的函数关系式

(3)假设EFHG围成四边形的面积能为,通过y1求出E、G、F、H的坐标,求出EF、GH的长度,

通过四边形EFHG的面积求出m的值

 

查看答案和解析>>

如图,抛物线的顶点为D,与x轴交于点A,B,与y轴交于点C,且OB = 2OC= 3.

   (1)求a,b的值;

   (2)将45°角的顶点P在线段OB上滑动(不与点B重合),该角的一边过点D,另一边与BD交于点Q,设P(x,0),y2=DQ,试求出y2关于x的函数关系式;

(3)在同一平面直角坐标系中,两条直线x = m,x = m+分别与抛物线y1交于点E,G,与y2的函数图象交于点F,H.问点E、F、H、G围成四边形的面积能否为?若能,求出m的值;若不能,请说明理由.

【解析】通过B(3,0),C(0,)两点,求出拋物线的解析式,

(2)作DN⊥AB,由y1求出AB=4,DN=BN=2,DB=2,由根据勾股定理得jPD2-(1-x)2=4,又因为△MPQ ∽ △MBP所以kPD2=DQ´DB=y2´2,由j、k得y2x的函数关系式

(3)假设EFHG围成四边形的面积能为,通过y1求出E、G、F、H的坐标,求出EF、GH的长度,

通过四边形EFHG的面积求出m的值

 

查看答案和解析>>

有一座抛物线型拱桥(图1),其水面宽为18米,拱顶离水面AB的距离为9米.有一货船要将打包好的一些长方体物品(长、宽、高分别是4米、3米、8米)放在甲板上运过拱桥(假设载货后船的甲板与水面大致平齐).
(1)求抛物线的解析式.
(2)若货物堆放方式的正视图如下(图2),问船能载货物通过拱桥吗?通过计算说明你的结论.

(3)若改变货物的堆放方式(正视图如图甲、图乙).问图甲和图乙能否载货物通过拱桥?假设此货船的甲板只能提供宽13米,长18米的置物空间,为了尽可能地多装这些长方体物品(略去其它因素),你会选用图甲和图乙中的哪一种载物方式,为什么?

查看答案和解析>>

某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=-
120
x2
+c且过顶点C(0,5)(长度单位:m)
(1)直接写出c的值;
(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5m的地毯,地毯的价格为20元/m2,求购买地毯需多少元?
(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EFGH的周长为27.5m,求斜面EG的倾斜角∠GEF的度数.(精确到0.1°)精英家教网

查看答案和解析>>


同步练习册答案