24.把两个全等的直角三角板ABC和EFG叠放在一起.使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.其中∠B=∠F=30°.斜边AB和EF长均为4.(1)当 EG⊥AC于点K.GF⊥BC于点H时.求GH:GK的值 (2) 现将三角板EFG由图①所示的位置绕O点沿逆时针方向旋转.旋转角α满足条件:0°<α<30°.EG交AC于点K .GF交BC于点H.GH:GK的值是否改变?证明你发现的结论,(3)三角板EFG由图①所示的位置绕O点逆时针旋转一周.是否存在某位置使△BFG是等腰三角形.若存在.请直接写出相应的旋转角α,若不存在.说明理由. 查看更多

 

题目列表(包括答案和解析)

把两个全等的直角三角板ABC和EFG叠放在一起,使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合,其中∠B=∠F=30°,斜边AB和EF长均为4.
(1)当EG⊥AC于点K,GF⊥BC于点H时(如图①),求GH:GK的值;
(2)现将三角板EFG由图①所示的位置绕O点沿逆时针方向旋转,旋转角α满足条件:0°<α<30°(如图②),EG交AC于点K,GF交BC于点H,GH:GK的值是否改变?证明你发现的结论;
(3)在②下,连接HK,在上述旋转过程中,设GH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;
(4)三角板EFG由图①所示的位置绕O点逆时针旋转时,0°<α≤90°,是否存在精英家教网某位置使△BFG是等腰三角形?若存在,请直接写出相应的旋转角α;若不存在,说明理由.

查看答案和解析>>

把两个全等的直角三角板ABC和EFG叠放在一起,且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合,其中∠B=∠F=30°,斜边AB和EF的长均为4。

(1)当EG⊥AC于点K,GF⊥BC于点H时,如图23-1,求GH:GK的值.

(2)现将三角板EFG由图23-1所示的位置绕O点沿逆时针方向旋转,旋转角满足条件:

0°<<30°,如图23-2,EG交AC于点K,GF交BC于点H,GH:GK的值是否改变?证明你的结论.

 

查看答案和解析>>

把两个全等的直角三角板ABC和EFG叠放在一起,且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合,其中∠B=∠F=30°,斜边AB和EF的长均为4。
(1)当EG⊥AC于点K,GF⊥BC于点H时,如图23-1,求GH:GK的值.
(2)现将三角板EFG由图23-1所示的位置绕O点沿逆时针方向旋转,旋转角满足条件:
0°<<30°,如图23-2,EG交AC于点K,GF交BC于点H,GH:GK的值是否改变?证明你的结论.

查看答案和解析>>

把两个全等的直角三角板ABC和EFG叠放在一起,且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合,其中∠B=∠F=30°,斜边AB和EF的长均为4。
(1)当EG⊥AC于点K,GF⊥BC于点H时,如图23-1,求GH:GK的值.
(2)现将三角板EFG由图23-1所示的位置绕O点沿逆时针方向旋转,旋转角满足条件:
0°<<30°,如图23-2,EG交AC于点K,GF交BC于点H,GH:GK的值是否改变?证明你的结论.

查看答案和解析>>

把两个全等的直角三角板ABC和EFG叠放在一起,使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合,其中∠B=∠F=30°,斜边AB和EF长均为4.
(1)当EG⊥AC于点K,GF⊥BC于点H时(如图①),求GH:GK的值;
(2)现将三角板EFG由图①所示的位置绕O点沿逆时针方向旋转,旋转角α满足条件:0°<α<30°(如图②),EG交AC于点K,GF交BC于点H,GH:GK的值是否改变?证明你发现的结论;
(3)在②下,连接HK,在上述旋转过程中,设GH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;
(4)三角板EFG由图①所示的位置绕O点逆时针旋转时,0°<α≤90°,是否存在某位置使△BFG是等腰三角形?若存在,请直接写出相应的旋转角α;若不存在,说明理由.

查看答案和解析>>


同步练习册答案