作一个直角三角形.并且作出它的外接圆. 查看更多

 

题目列表(包括答案和解析)

阅读材料:一个边长为20cm正方形,按图1中的方法可以剪拼成一个底面是正方形的直四棱柱模型,且使它的表面积与原正方形面积相等.具体方法如下:沿粗黑实线剪下4个边长为5cm的小正方形,拼成一个正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱.请按上述方法,将一个边长为20cm 的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等.
要求:在图2中画出你的剪拼方法(用虚线表示要折叠的线,用粗黑实线表示要剪开的线),注出必要的数据,并给予简要说明.
精英家教网

查看答案和解析>>

如图,平面直角坐标系中,直线y=-x+3与x轴、y轴分别交于点B、C;抛物线y=-x2+bx+c经过B、C两点,并与x轴交于另一点A.
(1)求该抛物线所对应的函数关系式;
(2)设P(m,n)是(1)中所得抛物线上的一个动点,且点P位于第一象限.过点P作直线l⊥x轴于点M,交BC于点N.
①试问:线段PN的长度是否存在最大值?若存在,求出它的最大值及此时m的值;若不存在,请说明理由;
②若△PBC是以BC为底边的等腰三角形,试求点P的横坐标.

查看答案和解析>>

如图,平面直角坐标系中,直线y=-x+3与x轴、y轴分别交于点B、C;抛物线y=-x2+bx+c经过B、C两点,并与x轴交于另一点A.
(1)求该抛物线所对应的函数关系式;
(2)设P(m,n)是(1)中所得抛物线上的一个动点,且点P位于第一象限.过点P作直线l⊥x轴于点M,交BC于点N.
①试问:线段PN的长度是否存在最大值?若存在,求出它的最大值及此时m的值;若不存在,请说明理由;
②若△PBC是以BC为底边的等腰三角形,试求点P的横坐标.

查看答案和解析>>

如图,平面直角坐标系中,直线y=-x+3与x轴、y轴分别交于点B、C;抛物线y=-x2+bx+c经过B、C两点,并与x轴交于另一点A.
(1)求该抛物线所对应的函数关系式;
(2)设P(m,n)是(1)中所得抛物线上的一个动点,且点P位于第一象限.过点P作直线l⊥x轴于点M,交BC于点N.
①试问:线段PN的长度是否存在最大值?若存在,求出它的最大值及此时m的值;若不存在,请说明理由;
②若△PBC是以BC为底边的等腰三角形,试求点P的横坐标.

查看答案和解析>>

阅读下列材料,并回答问题.
画一个直角三角形,使它的两条直角边分别为5和12,那么我们可以量得直角三角形的斜边长为13,并且52+122=132.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方.如果直角三角形中,两直角边长分别为a、b,斜边长为c,则a2+b2=c2,这个结论就是著名的勾股定理.
请利用这个结论,完成下面的活动:
(1)一个直角三角形的两条直角边分别为6、8,那么这个直角三角形斜边长为
10
10

(2)满足勾股定理方程a2+b2=c2的正整数组(a,b,c)叫勾股数组.例如(3,4,5)就是一组勾股数组.观察下列几组勾股数
①3,4,5; ②5,12,13; ③7,24,25;④9,40,41;
请你写出有以上规律的第⑤组勾股数:
11,60,61
11,60,61

(3)如图,AD⊥BC于D,AD=BD,AC=BE.AC=3,DC=1,求BD的长度.

(4)如图,点A在数轴上表示的数是
-
5
-
5
,请用类似的方法在下图数轴上画出表示数
3
的B点(保留作图痕迹).

查看答案和解析>>


同步练习册答案