分析:(1)作B点关于AC的对称点B/.作点O关于AB的对称点O/.连结AB/.QB/.AO/.PO/.B/O/.则QB=QB/.OP=O/P. 折线OPQB的长=OP+PQ+QB= O/P +PQ+ QB/ 所以折线OPQB的长的最小值为B/O/ 计算得最小值为2. (2)设B/O/交AC于点Q/.在直角三角形AO/B/中.AO/=1.B/O/=2.所以∠AB/O/=300.则∠AO/B/=600.在△AO/Q/中.∠Q/AO/=∠Q/AB+∠BAO/=600.所以△AQ/O/是等边三角形.所以AQ/=AO/=1=AO.所以点Q/就是AC 的中点.所以折线OPQB的长最小时.点Q在AC的中点. 查看更多

 

题目列表(包括答案和解析)

如图,直线l1与x轴、y轴分别交于A、B两点,直线l2与直线l1关于x轴对称,已知直线l1的解析式为y=x+3,
(1)求直线l2的解析式;
精英家教网
(2)过A点在△ABC的外部作一条直线l3,过点B作BE⊥l3于E,过点C作CF⊥l3于F,请画出图形并求证:BE+CF=EF;
精英家教网
(3)△ABC沿y轴向下平移,AB边交x轴于点P,过P点的直线与AC边的延长线相交于点Q,与y轴相交于点M,且BP=CQ,在△ABC平移的过程中,①OM为定值;②MC为定值.在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值.
精英家教网

查看答案和解析>>

如图,直线l1与x轴、y轴分别交于A、B两点,直线l2与直线l1关于x轴对称,已知直线l1的解析式为y=x+3,
(1)求直线l2的解析式;

(2)过A点在△ABC的外部作一条直线l3,过点B作BE⊥l3于E,过点C作CF⊥l3于F,请画出图形并求证:BE+CF=EF;

(3)△ABC沿y轴向下平移,AB边交x轴于点P,过P点的直线与AC边的延长线相交于点Q,与y轴相交于点M,且BP=CQ,在△ABC平移的过程中,①OM为定值;②MC为定值.在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值.

查看答案和解析>>

 如图,在平面直角坐标系中,三个机战的坐标分别为,延长AC到点D,使CD=,过点D作DE∥AB交BC的延长线于点E.

(1)求D点的坐标;

(2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;

(3)设G为y轴上一点,点P从直线与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短。(要求:简述确定G点位置的方法,但不要求证明)

查看答案和解析>>

(本小题满分12分)已知:抛物线x轴交于AB两点,与y轴交于点C. 其中点Ax轴的负半轴上,点Cy轴的负半轴上,线段OAOC的长(OA<OC)是方程的两个根,且抛物线的对称轴是直线

(1)求ABC三点的坐标;

(2)求此抛物线的解析式;

(3)若点D是线段AB上的一个动点(与点AB不重合),过点DDEBCAC于点E,连结CD,设BD的长为m,△CDE的面积为S,求Sm的函数关系式,并写出自变量m的取值范围.S是否存在最大值?若存在,求出最大值并求此时D点坐标;若不存在,请说明理由.

 

查看答案和解析>>

(本小题满分12分)已知:抛物线x轴交于AB两点,与y轴交于点C. 其中点Ax轴的负半轴上,点Cy轴的负半轴上,线段OAOC的长(OA<OC)是方程的两个根,且抛物线的对称轴是直线

(1)求ABC三点的坐标;
(2)求此抛物线的解析式;
(3)若点D是线段AB上的一个动点(与点AB不重合),过点DDEBCAC于点E,连结CD,设BD的长为m,△CDE的面积为S,求Sm的函数关系式,并写出自变量m的取值范围.S是否存在最大值?若存在,求出最大值并求此时D点坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案