7.如图19-7l.菱形ABCD的对角线AC=6.BD=8.∠ABD=a. 则下列结论正确的是 ( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

如图19-2-36,△ABC中, ∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.

求证:四边形CEHF为菱形.

图19-2-36

查看答案和解析>>

7、如图,已知菱形ABCD,E是AB延长线上一点,连接DE交BC于点F,在不添加任何辅助线的情况下,请补充一个条件,使△CDF≌△BEF,这个条件是
DC=EB

查看答案和解析>>

请阅读下列材料:
(1)问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及
PG
PC
的值.
(2)实验与探究:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.
写出上面问题中线段PG与PC的位置关系
垂直
垂直
; 及
PG
PC
=
3
3

(3)归纳与发现:将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.
运用与拓广:
若图1中∠ABC=∠BEF=2α(0°<α<90°),将菱形BEFG绕点B顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出
PG
PC
的值(用含α的式子表示).

查看答案和解析>>

(2012•济南)如图1,在菱形ABCD中,AC=2,BD=2
3
,AC,BD相交于点O.
(1)求边AB的长;
(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G.
①判断△AEF是哪一种特殊三角形,并说明理由;
②旋转过程中,当点E为边BC的四等分点时(BE>CE),求CG的长.

查看答案和解析>>

(2011•辽阳)如图,已知菱形ABCD的边长为2,∠BAD=60°,若DE⊥AB,垂足为点E,则DE的长为
3
3

查看答案和解析>>


同步练习册答案