计算题. ①.分解因式: ② 解方程x2 +3x―10=0 查看更多

 

题目列表(包括答案和解析)

(本小题满分10分)如图,小丽的家住在世通华庭的电梯公寓AD内,她家的对面新建了一座大厦BC。为了测得大厦的高度,小丽在她家的楼底A处测得大厦顶部B的仰角为60º,爬上楼顶D处测得大厦的顶部B的仰角为30º。已知小丽所住的电梯公寓高82米,请你帮助小丽计算出大厦高度BC及大厦与小丽所住电梯公寓间的距离AC。
(计算结果保留根号)

查看答案和解析>>

(本小题满分10分)

某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:

方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;

方案二:售价不变,但发资料做广告。已知这种商品每月的广告费用m(千元)与销售量倍数p关系为p =  ;

试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!

 

查看答案和解析>>

(本小题满分10分)

某工厂计划为震区生产两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套型桌椅(一桌两椅)需木料,一套型桌椅(一桌三椅)需木料,工厂现有库存木料

1.(1)有多少种生产方案?

2.(2)现要把生产的全部桌椅运往震区,已知每套型桌椅的生产成本为100元,运费2元;每套型桌椅的生产成本为120元,运费4元,求总费用(元)与生产型桌椅(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用生产成本运费)

3.(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.

 

查看答案和解析>>

(2011广西崇左,22,10分)(本小题满分10分)矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的矩形,也是特殊的菱形.因此,我们可利用矩形、菱形的性质来研究正方形的有关问题.回答下列问题:
(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系的下图中.

(2)要证明一个四边形是正方形,可先证明四边形是矩形,再证明这个矩形的_______相等;或者先证明四边形是菱形,在证明这个菱形有一个角是________ .
(3)某同学根据菱形面积计算公式推导出对角线长为a的正方形面积是S=0.5a2,对此结论,你认为是否正确?若正确,请说明理由;若不正确,请举出一个反例说明.

查看答案和解析>>

(本小题满分10分)如图,小丽的家住在世通华庭的电梯公寓AD内,她家的对面新建了一座大厦BC。为了测得大厦的高度,小丽在她家的楼底A处测得大厦顶部B的仰角为60º,爬上楼顶D处测得大厦的顶部B的仰角为30º。已知小丽所住的电梯公寓高82米,请你帮助小丽计算出大厦高度BC及大厦与小丽所住电梯公寓间的距离AC。
(计算结果保留根号)

查看答案和解析>>


同步练习册答案