特殊三角形的性质和判定 性质 判定 等腰 三角形 ①等腰三角形的两个底角相等, ②等腰三角形顶角的平分线.底边上的中线.底边上的高互相重合. 有两个角相等的三角形是等腰三角形. 等边 三角形 ①具有等腰三角形的所有性质, ②等边三角形的三个角都相等.并且每个角都等于60° ①有一个角等于60°的等腰三角形是等边三角形, ②三个角都相等的三角形是等边三角形. 直角 三角形 ①勾股定理:直角三角形两条直角边的平方和等于斜边的平方, ②在直角三角形中.如果一个锐角等于30°.那么它所对的直角边等于斜边的一半. ③直角三角形斜边上的中线等于斜边的一半. ①勾股定理的逆定理:如果三角形两边的平方和等于第三边的平方.那么这个三角形是直角三角形. ②如果一个三角形一边上的中线等于这边的一半. 那么这个三角形是直角三角形. 查看更多

 

题目列表(包括答案和解析)

如图1,在△ABC中,当∠C=90°,AC=BC时,此时,我们称这种特殊的三角形为等腰直角三角形。

 

 

 

 

 


(1)如图2,△ABC和△CDE都是等腰直角三角形,且∠ACB=∠DCE=90°,请连接AD,BE,并请你猜一猜AD与BE是否相等?

答:______。

(2)如果图2中的AD=BE,请你利用所学知识说明理由。

【解析】根据等腰直角三角形的性质得到∠ACB=∠DCE=90°,AC=BC,CD=EC,然后利用SAS判定△ACD≌△BCE.从而得出AD=BE

 

查看答案和解析>>

如图1,在△ABC中,当∠C=90°,AC=BC时,此时,我们称这种特殊的三角形为等腰直角三角形。

 

 

 

 

 


(1)如图2,△ABC和△CDE都是等腰直角三角形,且∠ACB=∠DCE=90°,请连接AD,BE,并请你猜一猜AD与BE是否相等?

答:______。

(2)如果图2中的AD=BE,请你利用所学知识说明理由。

【解析】根据等腰直角三角形的性质得到∠ACB=∠DCE=90°,AC=BC,CD=EC,然后利用SAS判定△ACD≌△BCE.从而得出AD=BE

 

查看答案和解析>>

简单的轴对称图形
(1)角是轴对称图形,它的对称轴是它的平分线所在的直线.角平分线上的点到______的距离相等;到一个角的两边距离相等的点,在______上.
(2)线段是轴对称图形,线段的______是它的一条对称轴.线段的______上的点到这条线段两个端点的距离相等.______的点,在这条线段的垂直平分线上.
轴对称和轴对称图形的区别与联系:
区别:(1)轴对称是说两个图形的位置关系,轴对称图形是说一个具有特殊形状的图形;
(2)轴对称是对两个图形说的,轴对称图形是对一个图形说的.
联系:(1)它们的定义中,都有沿某直线折叠,图形重合;
(2)如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形,反过来,把轴对称图形的两部分当作两个图形,那么这两个图形成轴对称.
提问:等腰三角形的判定与性质?

查看答案和解析>>

简单的轴对称图形
(1)角是轴对称图形,它的对称轴是它的平分线所在的直线.角平分线上的点到______的距离相等;到一个角的两边距离相等的点,在______上.
(2)线段是轴对称图形,线段的______是它的一条对称轴.线段的______上的点到这条线段两个端点的距离相等.______的点,在这条线段的垂直平分线上.
轴对称和轴对称图形的区别与联系:
区别:(1)轴对称是说两个图形的位置关系,轴对称图形是说一个具有特殊形状的图形;
(2)轴对称是对两个图形说的,轴对称图形是对一个图形说的.
联系:(1)它们的定义中,都有沿某直线折叠,图形重合;
(2)如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形,反过来,把轴对称图形的两部分当作两个图形,那么这两个图形成轴对称.
提问:等腰三角形的判定与性质?

查看答案和解析>>

简单的轴对称图形
(1)角是轴对称图形,它的对称轴是它的平分线所在的直线.角平分线上的点到
角的两边
角的两边
的距离相等;到一个角的两边距离相等的点,在
这个角的平分线
这个角的平分线
上.
(2)线段是轴对称图形,线段的
垂直平分线
垂直平分线
是它的一条对称轴.线段的
垂直平分线
垂直平分线
上的点到这条线段两个端点的距离相等.
到线段两端点距离相等
到线段两端点距离相等
的点,在这条线段的垂直平分线上.
轴对称和轴对称图形的区别与联系:
区别:(1)轴对称是说两个图形的位置关系,轴对称图形是说一个具有特殊形状的图形;
(2)轴对称是对两个图形说的,轴对称图形是对一个图形说的.
联系:(1)它们的定义中,都有沿某直线折叠,图形重合;
(2)如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形,反过来,把轴对称图形的两部分当作两个图形,那么这两个图形成轴对称.
提问:等腰三角形的判定与性质?

查看答案和解析>>


同步练习册答案