题目列表(包括答案和解析)
已知抛物线y=ax2+bx+c的图象交x轴于点A(x0,0)和点B(2,0),与y轴的正半轴交于点C,其对称轴是直线x=-1,tan∠BAC=2,点A关于y轴的对称点为点D.
(1)确定A.C.D三点的坐标;
(2)求过B.C.D三点的抛物线的解析式;
(3)若过点(0,3)且平行于x轴的直线与(2)小题中所求抛物线交于M.N两点,以MN为一边,抛物线上任意一点P(x,y)为顶点作平行四边形,若平行四边形的面积为S,写出S关于P点纵坐标y的函数解析式.
(4)当
<x<4时,(3)小题中平行四边形的面积是否有最大值,若有,请求出,若无,请说明理由.
| |||||||||||||||||||
如图,抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,对称轴与抛物线相交于点P、与直线BC相交于点M,连接PB.
(1)求该抛物线的解析式;
(2)抛物线上是否存在一点Q,使△QMB与△PMB的面积相等,若存在,求点Q的坐标;若不存在,说明理由;
(3)在第一象限、对称轴右侧的抛物线上是否存在一点R,使△RPM与△RMB的面积相等,若存在,直接写出点R的坐标;若不存在,说明理由.
如图,抛物线y=ax2+bx-4a经过A(-1,0)、C(0,4)两点,与x轴交于另一点B.
(1)求抛物线的解析式;
(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;
(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.
如图,抛物线C1:y=ax2+bx-1与x轴交于两点A(-1,0),B(1,0),与y轴交于点C.
(1)求抛物线C1的解析式;
(2)若点D为抛物线C1上任意一点,且四边形ACBD为直角梯形,求点D的坐标;
(3)若将抛物线C1先向上平移1个单位,再向右平移2个单位得到抛物线C2,直线l1是第一、三象限的角平分线所在的直线.若点P是抛物线C2对称轴上的一个动点,直线l2:x=t平行于y轴,且分别与抛物线C2和直线l1交于点D、E两点.是否存在直线l2,使得△DEP是以DE为直角边的等腰直角三角形,若存在求出的值;若不存在说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com