8.已知当成立时.也成立.求正数的取值范围. 查看更多

 

题目列表(包括答案和解析)

已知Sn是数列{an }的前n项和,Sn满足关系式数学公式数学公式
(n≥2,n为正整数).
(1)令bn=2nan,求证数列{bn }是等差数列,并求数列{an}的通项公式;
(2)对于数列{un},若存在常数M>0,对任意的n∈N*,恒有|un+1-un|+|un-un-1|+…+|u2-u1|≤M成立,称数列{un} 为“差绝对和有界数列”,
证明:数列{an}为“差绝对和有界数列”;
(3)根据(2)“差绝对和有界数列”的定义,当数列{cn}为“差绝对和有界数列”时,
证明:数列{cn•an}也是“差绝对和有界数列”.

查看答案和解析>>

已知Sn是数列{an }的前n项和,Sn满足关系式
(n≥2,n为正整数).
(1)令bn=2nan,求证数列{bn }是等差数列,并求数列{an}的通项公式;
(2)对于数列{un},若存在常数M>0,对任意的n∈N*,恒有|un+1-un|+|un-un-1|+…+|u2-u1|≤M成立,称数列{un} 为“差绝对和有界数列”,
证明:数列{an}为“差绝对和有界数列”;
(3)根据(2)“差绝对和有界数列”的定义,当数列{cn}为“差绝对和有界数列”时,
证明:数列{cn•an}也是“差绝对和有界数列”.

查看答案和解析>>

已知Sn是数列{an }的前n项和,Sn满足关系式
(n≥2,n为正整数).
(1)令bn=2nan,求证数列{bn }是等差数列,并求数列{an}的通项公式;
(2)对于数列{un},若存在常数M>0,对任意的n∈N*,恒有|un+1-un|+|un-un-1|+…+|u2-u1|≤M成立,称数列{un} 为“差绝对和有界数列”,
证明:数列{an}为“差绝对和有界数列”;
(3)根据(2)“差绝对和有界数列”的定义,当数列{cn}为“差绝对和有界数列”时,
证明:数列{cn•an}也是“差绝对和有界数列”.

查看答案和解析>>

已知Sn是数列{an }的前n项和,Sn满足关系式
(n≥2,n为正整数).
(1)令bn=2nan,求证数列{bn }是等差数列,并求数列{an}的通项公式;
(2)对于数列{un},若存在常数M>0,对任意的n∈N*,恒有|un+1-un|+|un-un-1|+…+|u2-u1|≤M成立,称数列{un} 为“差绝对和有界数列”,
证明:数列{an}为“差绝对和有界数列”;
(3)根据(2)“差绝对和有界数列”的定义,当数列{cn}为“差绝对和有界数列”时,
证明:数列{cn•an}也是“差绝对和有界数列”.

查看答案和解析>>

已知Sn是数列{an }的前n项和,Sn满足关系式2Sn=Sn-1-(
1
2
)n-1+2
a1=
1
2

(n≥2,n为正整数).
(1)令bn=2nan,求证数列{bn }是等差数列,并求数列{an}的通项公式;
(2)对于数列{un},若存在常数M>0,对任意的n∈N*,恒有|un+1-un|+|un-un-1|+…+|u2-u1|≤M成立,称数列{un} 为“差绝对和有界数列”,
证明:数列{an}为“差绝对和有界数列”;
(3)根据(2)“差绝对和有界数列”的定义,当数列{cn}为“差绝对和有界数列”时,
证明:数列{cn•an}也是“差绝对和有界数列”.

查看答案和解析>>


同步练习册答案