题目列表(包括答案和解析)
已知数列
是各项均不为0的等差数列,公差为d,
为其前n项和,且满足
,
.数列
满足
,
,
为数列
的前n项和.
(1)求数列
的通项公式
和数列
的前n项和
;
(2)若对任意的
,不等式
恒成立,求实数
的取值范围;
(3)是否存在正整数![]()
,使得
成等比数列?若存在,求出所有
的值;若不存在,请说明理由.
【解析】第一问利用在
中,令n=1,n=2,
得
即
解得
,,
[
又
时,
满足
,![]()
,
![]()
第二问,①当n为偶数时,要使不等式
恒成立,即需不等式
恒成立.
,等号在n=2时取得.
此时
需满足
.
②当n为奇数时,要使不等式
恒成立,即需不等式
恒成立.
是随n的增大而增大, n=1时
取得最小值-6.
此时
需满足
.
第三问
,
若
成等比数列,则
,
即. ![]()
由
,可得
,即
,
. ![]()
(1)(法一)在
中,令n=1,n=2,
得
即
解得
,,
[
又
时,
满足
,![]()
,
.
(2)①当n为偶数时,要使不等式
恒成立,即需不等式
恒成立.
,等号在n=2时取得.
此时
需满足
.
②当n为奇数时,要使不等式
恒成立,即需不等式
恒成立.
是随n的增大而增大, n=1时
取得最小值-6.
此时
需满足
.
综合①、②可得
的取值范围是
.
(3)
,
若
成等比数列,则
,
即. ![]()
由
,可得
,即
,
. ![]()
又
,且m>1,所以m=2,此时n=12.
因此,当且仅当m=2,
n=12时,数列
中的
成等比数列
已知函数
.(
)
(1)若
在区间
上单调递增,求实数
的取值范围;
(2)若在区间
上,函数
的图象恒在曲线
下方,求
的取值范围.
【解析】第一问中,首先利用
在区间
上单调递增,则
在区间
上恒成立,然后分离参数法得到
,进而得到范围;第二问中,在区间
上,函数
的图象恒在曲线
下方等价于
在区间
上恒成立.然后求解得到。
解:(1)
在区间
上单调递增,
则
在区间
上恒成立. …………3分
即
,而当
时,
,故
.
…………5分
所以
.
…………6分
(2)令
,定义域为
.
在区间
上,函数
的图象恒在曲线
下方等价于
在区间
上恒成立.
∵
…………9分
① 若
,令
,得极值点
,
,
当
,即
时,在(
,+∞)上有
,此时
在区间
上是增函数,并且在该区间上有
,不合题意;
当
,即
时,同理可知,
在区间
上递增,
有
,也不合题意;
…………11分
② 若
,则有
,此时在区间
上恒有
,从而
在区间
上是减函数;
要使
在此区间上恒成立,只须满足![]()
,
由此求得
的范围是
. …………13分
综合①②可知,当
时,函数
的图象恒在直线
下方.
设点
为平面直角坐标系
中的一个动点(其中O为坐标原点),点P到定点
的距离比点P到
轴的距离大
。
(1)求点P的轨迹方程。
(2)若直线
与点P的轨迹相交于A、B两点,且
,求
的值。
(3)设点P的轨迹是曲线C,点
是曲线C上的一点,求以Q为切点的曲线C 的切线方程。
【解析】本试题主要考查了轨迹方程的求解,利用直接法设点表示轨迹方程,并能利用所求的轨迹进行直线与圆锥曲线位置关系的运用。以及导数的几何意义的运用的综合试题。
设点
为平面直角坐标系
中的一个动点(其中O为坐标原点),点P到定点
的距离比点P到
轴的距离大
。
(1)求点P的轨迹方程。
(2)若直线
与点P的轨迹相交于A、B两点,且
,求
的值。
(3)设点P的轨迹是曲线C,点
是曲线C上的一点,求以Q为切点的曲线C 的切线方程。
【解析】本试题主要考查了轨迹方程的求解,利用直接法设点表示轨迹方程,并能利用所求的轨迹进行直线与圆锥曲线位置关系的运用。以及导数的几何意义的运用的综合试题。
某省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数
与时刻
(时) 的关系为
,其中
是与气象有关的参数,且
.
(1)令
,
,写出该函数的单调区间,并选择其中一种情形进行证明;
(2)若用每天
的最大值作为当天的综合放射性污染指数,并记作
,求
;
(3)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?
【解析】第一问利用定义法求证单调性,并判定结论。
第二问(2)由函数的单调性知
,
∴
,即t的取值范围是
.
当
时,记![]()
则
∵
在
上单调递减,在
上单调递增,
第三问因为当且仅当
时,
.
故当
时不超标,当
时超标.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com