用综合法证明:若a,b,c是不全相等的实数.则a2+b2+c2>ab+bc+ac 查看更多

 

题目列表(包括答案和解析)

是不全相等的实数,求证:

证明过程如下:

不全相等,

以上三式至少有一个“”不成立,

将以上三式相加得

此证法是(    )

A.分析法       B.综合法       C.分析法与综合法并用       D.反证法

 

查看答案和解析>>

若a,b,c是不全相等的实数,求证:a2+b2+c2>ab+bc+ca.

证明过程如下:

∵a、b、c∈R,∴a2+b2≥2ab,

b2+c2≥2bc,c2+a2≥2ac,

又∵a,b,c不全相等,

∴以上三式至少有一个“=”不成立,

∴将以上三式相加得2(a2+b2+c2)>2(ab+bc+ac),

∴a2+b2+c2>ab+bc+ca.

此证法是(  )

(A)分析法                      (B)综合法

(C)分析法与综合法并用      (D)反证法

查看答案和解析>>


同步练习册答案