已知函数在必区间上有最大值3.最小值2.则的取值范围是 ( ) (A) (B) (C) (D) 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=|x2-2ax+b|(x∈R),给出下列命题:
(1)f(x)必是偶函数;
(2)当f(0)=f(2)时,f(x)的图象关于直线x=1对称;
(3)若a2-b≤0,则f(x)在区间[a,+∞)上是增函数;
(4)f(x)有最大值|a2-b|.
其中正确的命题序号是(  )

查看答案和解析>>

已知函数y=x+
a
x
(x>0)有如下性质:如果常数a>0,那么该函数在(0,
a
]上是减函数,在[
a
,+∞)上是增函数.
(1)如果函数y=x+
b2
x
(x>0)的值域为[6,+∞),求b的值;
(2)研究函数y=x2+
c
x2
(x>0,常数c>0)在定义域内的单调性,并用定义证明(若有多个单调区间,请选择一个证明);
(3)对函数y=x+
a
x
和y=x2+
a
x2
(x>0,常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=(x2+
1
x
)2
+(
1
x2
+x)2
在区间[
1
2
,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

已知函数y=x+有如下性质:如果常数a>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.

(1)如果函数y=x+(x>0)的值域为[6,+∞),求b的值;

(2)研究函数y=x2+(常数c>0)在定义域内的单调性,并说明理由;

(3)对函数y=x+和y=x2+(常数a>0)作出推广,使它们都是你所推广的函数的特例,研究推广后的函数的单调性(只须写出结论,不必证明),并求函数f(x)=(x2+)n+(+x)n(n是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

已知函数有如下性质:如果常数,那么该函数在(0,)上减函数,在是增函数。

(1)如果函数的值域为,求的值;

(2)研究函数(常数)在定义域的单调性,并说明理由;

(3)对函数(常数)作出推广,使它们都是你所推广的函数的特例。研究推广后的函数的单调性(只须写出结论,不必证明),并求函数

(n是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论)。

查看答案和解析>>

已知函数 ,给出下列命题:

(1)必是偶函数;

(2)当时,的图象关于直线对称;

(3)若,则在区间上是增函数;

(4)有最大值.

其中正确的命题序号是(      )

A.(3)       B.(2)(3)    C.(3)(4)    D.(1)(2)(3)

 

查看答案和解析>>


同步练习册答案