已知函数. ⑴ 求的定义域, ⑵ 当a>1时.判断函数的单调性.并证明你的结论. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=lg(ax-kbx )(k是正实数,a>1>b>0)的定义域为(0,+∞),问是否存在实数a,b,当x∈(1,+∞)时,f(x)的值取到一切正实数,且f(3)=lg4;如果存在,求出a,b的值;如果不存在,请说明理由。

查看答案和解析>>

已知函数f(x)=为常数。

(I)当=1时,求f(x)的单调区间;

(II)若函数f(x)在区间[1,2]上为单调函数,求的取值范围。

【解析】本试题主要考查了导数在研究函数中的运用。第一问中,利用当a=1时,f(x)=,则f(x)的定义域是然后求导,,得到由,得0<x<1;由,得x>1;得到单调区间。第二问函数f(x)在区间[1,2]上为单调函数,则在区间[1,2]上恒成立,即即,或在区间[1,2]上恒成立,解得a的范围。

(1)当a=1时,f(x)=,则f(x)的定义域是

,得0<x<1;由,得x>1;

∴f(x)在(0,1)上是增函数,在(1,上是减函数。……………6分

(2)。若函数f(x)在区间[1,2]上为单调函数,

在区间[1,2]上恒成立。∴,或在区间[1,2]上恒成立。即,或在区间[1,2]上恒成立。

又h(x)=在区间[1,2]上是增函数。h(x)max=(2)=,h(x)min=h(1)=3

,或。    ∴,或

 

查看答案和解析>>

已知函数f(x)=lg(ax-kbx )(k是正实数,a>1>b>0)的定义域为(0,+∞),问是否存在实数a,b,当x∈(1,+∞)时,f(x)的值取到一切正实数,且f(3)=lg4;如果存在,求出a,b的值;如果不存在,请说明理由。

查看答案和解析>>

已知函数f(x)=lg(x+-2),其中a是大于0的常数,
(Ⅰ)求函数f(x)的定义域;
(Ⅱ)当a∈(1,4)时,求函数f(x)在[2,+∞)上的最小值;
(Ⅲ)若对任意x∈[2,+∞)恒有f(x)>0,试确定a的取值范围。

查看答案和解析>>

已知函数f(x)=ln(ax-bx)(a>1>b>0)。
(1)求函数f(x)的定义域I;
(2)判断函数f(x)在定义域I上的单调性,并说明理由;
(3)当a,b满足什么关系时,f(x)在[1,+ ∞)上恒取正值。

查看答案和解析>>


同步练习册答案