题目列表(包括答案和解析)
若直线l满足如下条件,分别求出其方程.
(1)斜率为
,且与两坐标轴围成的三角形面积为6;
(2)经过两点A(1,0)及B(m,1);
(3)将直线l绕其上一点P沿顺时针方向旋转角α(0°<α<90°)所得直线方程是x-y-2=0,若继续旋转90°-α,所得直线方程为x+2y+1=0;
(4)过点(-a,0),(a>0)且割第二象限得一面积为S的三角形区域.
(2012年高考上海卷理科22)(4+6+6=16分)在平面直角坐标系
中,已知双曲线
:
.
(1)过
的左顶点引
的一条渐进线的平行线,求该直线与另一条渐进线及
轴围成的三角形的面积;
(2)设斜率为1的直线
交
于
、
两点,若
与圆
相切,求证:
;
(3)设椭圆
:
,若
、
分别是
、
上的动点,且
,求证:
到直线
的距离是定值.
(本小题满分12分)
已知点
,过点
作抛物线![]()
的切线
,切点
在第二象限,如图.
(Ⅰ)求切点
的纵坐标;
(Ⅱ)若离心率为
的椭圆
恰好经过切点
,设切线
交椭圆的另一点为
,记切线
的斜率分别为
,若
,求椭圆方程.
21(本小题满分12分)
已知函数
.
(1)讨论函数
的单调性;
(2)当
时,
恒成立,求实数
的取值范围;
(3)证明:![]()
.
22.选修4-1:几何证明选讲
如图,
是圆
的直径,
是弦,
的平分线
交圆
于点
,
,交
的延长线于点
,
交
于点
。
(1)求证:
是圆
的切线;
(2)若
,求
的值。
23.选修4—4:坐标系与参数方程
在平面直角坐标系中,直线
过点
且倾斜角为
,以坐标原点为极点,
轴的非负半轴为极轴,建立极坐标系,曲线
的极坐标方程为
,直线
与曲线
相交于
两点;
(1)若
,求直线
的倾斜角
的取值范围;
(2)求弦
最短时直线
的参数方程。
24. 选修4-5 不等式选讲
已知函数![]()
(I)试求
的值域;
(II)设
,若对
,恒有
成立,试求实数a的取值范围。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com