题目列表(包括答案和解析)
(本小题满分14分)已知函数
=
+
有如下性质:如果常数
>0,那么该
函数在
0,![]()
上是减函数,在![]()
,+∞
上是增函数.
(1)如果函数
=
+
(
>0)的值域为
6,+∞
,求
的值;
(2)研究函数
=
+
(常数
>0)在定义域内的单调性,并说明理由;
(3)对函数
=
+
和
=
+
(常数
>0)作出推广,使它们都是你所推广的
函数的特例.
(4)(理科生做)研究推广后的函数的单调性(只须写出结论,不必证明),并求函数
=
+
(
是正整数)在区间[
,2]上的最大值和最小值(可利用你
的研究结论).
(本小题满分14分)
已知函数
,如果存在给定的实数对(
),使得
恒成立,则称
为“S-函数”.
(Ⅰ)判断函数
是否是“S-函数”;
(Ⅱ)若
是一个“S-函数”,求出所有满足条件的有序实数对
;
(Ⅲ)若定义域为
的函数
是“S-函数”,且存在满足条件的有序实数对
和
,当
时,
的值域为
,求当
时函数
的值域.
(本小题满分14分)
已知函数f(x)的定义域为
,且同时满足:①f(1)=3;②
对一切
恒成立;③若
,
,
,则
.
①求函数f(x)的最大值和最小值;
②试比较
与
的大小;
③某同学发现:当
时,有
,由此他提出猜想:对一切
,都有
,请你判断此猜想是否正确,并说明理由.
(本小题满分14分)
已知:函数
(
),
.
(1)若函数
图象上的点到直线
距离的最小值为
,求
的值;
(2)关于
的不等式
的解集中的整数恰有3个,求实数
的取值范围;
(3)对于函数
与
定义域上的任意实数
,若存在常数
,使得不等式
和
都成立,则称直线
为函数
与
的“分界线”。设
,
,试探究
与
是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
(本小题满分14分)已知函数
=
+
有如下性质:如果常数
>0,那么该
函数在
0,![]()
上是减函数,在![]()
,+∞
上是增函数.
(1)如果函数
=
+
(
>0)的值域为
6,+∞
,求
的值;
(2)研究函数
=
+
(常数
>0)在定义域内的单调性,并说明理由;
(3)对函数
=
+
和
=
+
(常数
>0)作出推广,使它们都是你所推广的
函数的特例.
(4)(理科生做)研究推广后的函数的单调性(只须写出结论,不必证明),并求函数
=
+
(
是正整数)在区间[
,2]上的最大值和最小值(可利用你
的研究结论).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com