已知定义域为R的函数y=f(x)在上是减函数, 又y=f(x+4)是偶函数, 则( ) A. f(5)<f(2)<f(7) B. f(2)<f(5)<f(7) C. f(7)<f(2)<f(5) D. f(7)<f(5)<f(2) 查看更多

 

题目列表(包括答案和解析)

.已知定义域为R的函数y=f(x)在(1,+∞)上是增函数,且函数y=f(x+1)是偶函数,那么
(    )
A.f(O)<f(-1)<f(4)B.f(0)<f(4)<f(-1)
C.f(4)<f(=1)<f(0)D.f(-1)<f(O)<f(4)

查看答案和解析>>

已知定义域为R的函数y=f(x)和y=g(x),它们分别满足条件:对任意a,b∈R,都有f(a+b)=f(a)+f(b);对任意a,b∈R,都有g(a+b)=g(a)•g(b),且对任意x>0,g(x)>1.
(1)求f(0)、g(0)的值;
(2)证明函数y=f(x)是奇函数;
(3)证明x<0时,0<g(x)<1,且函数y=g(x)在R上是增函数;
(4)试各举出一个符合函数y=f(x)和y=g(x)的实例.

查看答案和解析>>

已知定义域为R的函数y=f(x)对任意的实数x,y恒有f(x)+f(y)=f(x+y)且当x>0时,f(x)<0,又f(1)=-
13
,则y=f(x)在[-6,3]上的值域为
[-1,2]
[-1,2]

查看答案和解析>>

已知定义域为R的函数y=f(x)和y=g(x),它们分别满足条件:对任意a,b∈R,都有f(a+b)=f(a)+f(b);对任意a,b∈R,都有g(a+b)=g(a)•g(b),且对任意x>0,g(x)>1.
(1)求f(0)、g(0)的值;
(2)证明函数y=f(x)是奇函数;
(3)证明x<0时,0<g(x)<1,且函数y=g(x)在R上是增函数;
(4)试各举出一个符合函数y=f(x)和y=g(x)的实例.

查看答案和解析>>

已知定义域为R的函数y=f(x)和y=g(x),它们分别满足条件:对任意a,b∈R,都有f(a+b)=f(a)+f(b);对任意a,b∈R,都有g(a+b)=g(a)•g(b),且对任意x>0,g(x)>1.
(1)求f(0)、g(0)的值;
(2)证明函数y=f(x)是奇函数;
(3)证明x<0时,0<g(x)<1,且函数y=g(x)在R上是增函数;
(4)试各举出一个符合函数y=f(x)和y=g(x)的实例.

查看答案和解析>>


同步练习册答案