1.cos75 o·cos15o= , 查看更多

 

题目列表(包括答案和解析)

(2012•杭州二模)如图所示,A,B,C是圆O上的三点,CO的延长线与线段BA的延长线交于圆O外的点D,若
OC
=m
OA
+n
OB
,则m+n的取值范围是(  )

查看答案和解析>>

已知O是△ABC内任意一点,连接AO、BO、CO并延长交对边于A′、B′、C′,则
OA′
AA′
+
OB′
BB′
+
OC′
CC′
=1
,运用类比猜想,对于空间中四面体A-BCD有
OA′
AA′
+
OB′
BB′
+
OC′
CC′
+
OD′
DD′
=1
OA′
AA′
+
OB′
BB′
+
OC′
CC′
+
OD′
DD′
=1

查看答案和解析>>

精英家教网如图,直三棱柱ABC-A′B′C′内接于高为
2
的圆柱中,已知∠ACB=90°,AA′=
2
,BC=AC=1,O为AB的中点.
求(1)圆柱的全面积;
(2)异面直线AB′与CO所成的角的大小;
(3)求二面角A′-BC-A的大小.

查看答案和解析>>

对于平面内的命题:“△ABC内接于圆O,圆O的半径为R,且O点在△ABC内,连接AO,BO,CO并延长分别交对边于A1,B1,C1,则AA1+BB1+CC1
9R
2
”.
证明如下:
OA1
AA1
+
OB1
BB1
+
OC1
CC1
=
S△OBC
S△ABC
+
S△OAC
S△ABC
+
S△OAB
S△ABC
=1

即:
AA1-R
AA1
+
BB1-R
BB1
+
CC1-R
CC1
=1
,即
1
AA1
+
1
BB1
+
1
CC1
=
2
R

由柯西不等式,得(AA1+BB1+CC1)(
1
AA1
+
1
BB1
+
1
CC1
)≥9
.∴AA1+BB1+CC1
9R
2

将平面问题推广到空间,就得到命题“四面体ABCD内接于半径为R的球O内,球心O在该四面体内,连接AO,BO,CO,DO并延长分别与对面交于A1,B1,C1,D1,则
AA1+BB1+CC1+DD1
16R
3
AA1+BB1+CC1+DD1
16R
3
”.

查看答案和解析>>

如图,某地有两家工厂,分别位于等腰直角△ABC的两个顶点A、B处,AB=20km.为了处理这两家工厂的污水,现要在该三角形区域(含边界)内且与A、B等距的一点O处,建造一个污水处理厂,并铺设排污管道AO、BO.记铺设管道的总长度为ykm.
(1)设AO=xkm,将y表示成关于x的函数;
(2)设CO=tkm,将y表示成关于t的函数.

查看答案和解析>>


同步练习册答案