(一).新课引入:前节课主要是讲授指数函数.对数函数以及幂函数的增长差异.本节课我们主要是通过一些生活中常遇到的实例来进一步说明函数模型在解决实际问题中的应用. 查看更多

 

题目列表(包括答案和解析)

对于数列{an},若定义一种新运算:△an=an+1-an(n∈N+),则称{△an}为数列{an}的一阶差分数列;类似地,对正整数k,定义:△kan=△k-1an+1-△k-1an=△(△k-1an),则称{△kan}为数列{an}的k阶差分数列.
(1)若数列{an}的通项公式为an=5n2+3n(n∈N+),则{△an},{△2an}是什么数列?
(2)若数列{an}的首项a1=1,且满足△2an-△an+1+an=-2n(n∈N+),设数列{an}的前n项和为Sn,求{an}的通项公式及
lim
n→∞
Sn+n-2
n•3n
的值.

查看答案和解析>>

四川省是最后一批进入新课标实施的省份之一,数学课将有一些深受学生喜爱的选修课.某中学在高一拟开设《数学史》等4门不同的选修课,规定每个学生必须选修,且只能从中选修一门.已知该校高一的三名学生甲、乙、丙对这4门不同的选修课的兴趣相同.
(Ⅰ)求甲、乙、丙这三个学生选修《数学史》这门课的人数不少于2的概率;
(Ⅱ)求4门选修课中恰有2门选修课这三个学生都没有选择的概率.

查看答案和解析>>

新课标要求学生数学模块学分认定由模块成绩决定,模块成绩由模块考试成绩和平时成绩构成,各占50%,若模块成绩大于或等于60分,获得2学分,否则不能获得学分(为0分),设计一算法,通过考试成绩和平时成绩计算学分,并画出程序框图.

查看答案和解析>>

某工厂用72万元钱购买了一台新机器,每年的保险费、油费合计为7.5万元,另外,维修保养费用逐年递增,第一年为2万元,以后每年增加1万元.
(I)设前n年的维修保养总费用为Sn万元,求Sn的表达式;
(Ⅱ)截止到第n年,这台机器的总费用是多少?
(Ⅲ)这台机器的最佳使用年限(年平均费用最小)是多少?

查看答案和解析>>

(2010•湖北模拟)某中学在新课改活动中,成立了机器人小组,他们在一次实验中,要观察坐标平面内沿一正方形四周运动的质点,为了记录这个质点的任何时刻的运动数据和位置,特在垂直于坐标平面原点的正上方1个单位长度处安装一探测仪,它的探测范围是以自身为球心,半径可调节的球,现已知质点运动轨迹的正方形四个顶点为(0,0)、(1,0)、(1,1)、(0,1),那么探测仪的探测半径最少要调到(  )

查看答案和解析>>


同步练习册答案