对于任意实数.以下5个命题中①若.则,②若.则,③若.则,④若.则,⑤若.则.正确的个数是 个 查看更多

 

题目列表(包括答案和解析)

有以下几个命题

①若函数是连续函数,则的值是±1;

②由一组样本数据(x1,y1),(x2,y2),…,(xn,yn)得到的回归直线方程为,直线必经过点

③设A、B为两个定点,m(m>0)为常数,,则动点P的轨迹为椭圆;

④若数列{an}是递增数列,且an=n2+λn+1(n≥2,n∈N*),则实数λ的取值范围

是(-5,+∞);

⑤若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,则点F2关于∠F1PF2的外角平分线对称的点M的轨迹是圆.

其中真命题的序号为________;(写出所有真命题的序号)

查看答案和解析>>

有以下几个命题

①一个容量为n的样本,分成若干组,已知某组的频数和频率分别为40和0.125,则n的值为320;

②设A、B为两个定点,m(m>0)为常数,,则动点P的轨迹为椭圆;

③若数列{an}是递增数列,且an=n2+λn+1(n≥2,n∈N*),则实数λ的取值范围是(-5,+∞);

④若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,则点F2关于∠F1PF2的外角平分线对称的点M的轨迹是圆.

其中真命题的序号为________;(写出所有真命题的序号)

查看答案和解析>>

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义f′(x)是y=f(x)的导函数y=f′(x)的导函数,若方程f′(x)=0有实数解x,则称点(x,f(x))为函数y=f(x)的“拐点”,可以发现,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一发现判断下列命题:
①任意三次函数都关于点(-,f(-))对称:
②存在三次函数f′(x)=0有实数解x,点(x,f(x))为麵y=f(x)的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数g(x)=x3-x2-,则,g()+g()+g()+…+g()=-105.5.
其中正确命题的序号为    (把所有正确命题的序号都填上).

查看答案和解析>>

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义f′(x)是y=f(x)的导函数y=f′(x)的导函数,若方程f′(x)=0有实数解x,则称点(x,f(x))为函数y=f(x)的“拐点”,可以发现,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一发现判断下列命题:
①任意三次函数都关于点(-,f(-))对称:
②存在三次函数f′(x)=0有实数解x,点(x,f(x))为麵y=f(x)的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数g(x)=x3-x2-,则,g()+g()+g()+…+g()=-105.5.
其中正确命题的序号为    (把所有正确命题的序号都填上).

查看答案和解析>>

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义f′(x)是y=f(x)的导函数y=f′(x)的导函数,若方程f′(x)=0有实数解x,则称点(x,f(x))为函数y=f(x)的“拐点”,可以发现,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一发现判断下列命题:
①任意三次函数都关于点(-,f(-))对称:
②存在三次函数f′(x)=0有实数解x,点(x,f(x))为麵y=f(x)的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数g(x)=x3-x2-,则,g()+g()+g()+…+g()=-105.5.
其中正确命题的序号为    (把所有正确命题的序号都填上).

查看答案和解析>>


同步练习册答案