讨论:如何从图象特征上得到奇函数.偶函数.增函数.减函数.最大值.最小值? 查看更多

 

题目列表(包括答案和解析)

请同学们动手做一做这个实验:将塑料瓶底部扎一小孔做成一漏斗,再挂在架子上,就做成了一个简易的单摆.在漏斗下方放一块纸板,板中间画一条直线作为坐标系的横轴.把漏斗灌上细沙并拉离平衡位置,放手使它摆动.同时匀速拉动纸板,这样可在纸板上得到一条曲线,如图,它表示了漏斗对平衡位置的位移s(纵坐标)随时间t(横坐标)变化情况.

请思考下面问题:

1.根据上节内容,请从图象判定它是否为周期函数?若是,周期是多少?

2.仔细想一想,依据图象的特征,你还能从图象中得到什么启示?

查看答案和解析>>

定义:设函数y=f(x)在(a,b)内可导,f'(x)为f(x)的导数,f''(x)为f'(x)的导数即f(x)的二阶导数,若函数y=f(x) 在(a,b)内的二阶导数恒大于等于0,则称函数y=f(x)是(a,b)内的下凸函数(有时亦称为凹函数).已知函数f(x)=xlnx
(1)证明函数f(x)=xlnx是定义域内的下凸函数,并在所给直角坐标系中画出函数f(x)=xlnx的图象;
(2)对?x1,x2∈R+,根据所画下凸函数f(x)=xlnx图象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]与x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小关系;
(3)当n为正整数时,定义函数N (n)表示n的最大奇因数.如N (3)=3,N (10)=5,….记S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,证明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

当函数的自变量取值区间与值域区间相同时,我们称这样的区间为该函数的保值区间.函数的保值区间有(-∞,m]、[m,n]、[n,+∞)三种形式.以下四个图中:虚线为二次函数图象的对称轴,直线l的方程为y=x,从图象可知,下列四个二次函数中有2个保值区间的函数是(  )

查看答案和解析>>

(2010•上海模拟)对于函数y=f(x)的图象上任意两点A(a,f(a)),B(b,f(b)),设点C分
AB
的比为λ(λ>0).若函数为f(x)=x2(x>0),则直线AB必在曲线AB的上方,且由图象特征可得不等式
a2b2
1+λ
(
a+λb
1+λ
)
2
.若函数为f(x)=log2010x,请分析该函数的图象特征,上述不等式可以得到不等式
log2010a+log2010b
1+λ
log2010
a+λb
1+λ
log2010a+log2010b
1+λ
log2010
a+λb
1+λ

查看答案和解析>>

下面对数列的理解有四种:
①数列可以看成一个定义在N*上的函数;
②数列的项数是无限的;
③数列若用图象表示,从图象上看都是一群孤立的点;
④数列的通项公式是唯一的.
其中说法正确的序号是(  )

查看答案和解析>>


同步练习册答案