题目列表(包括答案和解析)
已知函数![]()
⑴若
的定义域和值域均是
,求实数
的值;
⑵若
在
上是减函数,且对任意的
,总有
≤
,求实数
的取值范围.
【解析】(1)先对函数
配方,找出对称轴,明确单调性,再利用函数最值求解.
(2)在(1)的基础上,由a≥2,明确对称轴x=a∈[1,1+a]且(a+1)-a≤a-1,从而明确了单调性,再求最值.利用绝对值的性质,即得结果.
![]()
根据定义讨论(或证明)函数增减性的一般步骤是:
(1)设x1、x2是给定区间内的任意两个值且x1<x2;
(2)作差f(x1)-f(x2),并将此差化简、变形;
(3)判断f(x1)-f(x2)的正负,从而证得函数的增减性.
利用函数的单调性可以把函数值的大小比较的问题转化为自变量的大小比较的问题.
函数的单调性只能在函数的定义域内来讨论.这即是说,函数的单调区间是其定义域的________.
| 1 | 3 |
| π |
| 2 |
| x |
| 2 |
| x |
| 2 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com