11题.已知.则= 12题.= 13题.如果函数的图象关于对称.那么实数的值为 14题.2002年在北京召开的国际数学家大会.会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为1.大正方形的面积为25.直角三角形中较小的锐角为.那么的值等于 15题.函数的图象为.如下结论中正确的是 (写出所有正确结论的编号).①.图象关于直线对称, ②.图象关于点对称, ③.函数在区间内是增函数, ④.由的图角向右平移个单位长度可以得到图象. 查看更多

 

题目列表(包括答案和解析)

请在下面两题中,任选一题作答:
(1)(几何证明选讲选做题)已知PA是圆O的切线,切点为A,PA=2,AC是圆O的直径,PC与圆O交于点B,PB=l,则圆O的半径R=
3
3

(2)(坐标系与参数方程选做题)已知在极坐标系下两圆的极坐标方程分别为ρ=cosθ,ρ=
3
sinθ
,则此两圆的圆心距为
1
1

查看答案和解析>>

A.(坐标系与参数方程选做题)在极坐标系中,点P(2,
2
)
到直线l:3ρcosθ-4ρsinθ=3的距离为
1
1
. 
B.(几何证明选讲选做题)已知PA是圆O的切线,切点为A,PA=2,AC是圆O的直径,PC与圆O交于点B,PB=1,则圆O的半径R的长为
3
3

查看答案和解析>>

【坐标系与参数方程选做题】已知圆的极坐标方程为ρ=2cos(θ+
π4
),则该圆的半径是
1
1

查看答案和解析>>

(2012•厦门模拟)本小题设有(1)(2)(3)三个选考题,每题7分,请考生任选两题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知e1=
1
1
是矩阵M=
a
 1
0
 b
属于特征值λ1=2的一个特征向量.
(I)求矩阵M;
(Ⅱ)若a=
2
1
,求M10a.
(2)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,A(l,0),B(2,0)是两个定点,曲线C的参数方程为
AB
为参数).
(I)将曲线C的参数方程化为普通方程;
(Ⅱ)以A(l,0为极点,|
AB
|为长度单位,射线AB为极轴建立极坐标系,求曲线C的极坐标方程.
(3)选修4-5:不等式选讲
(I)试证明柯西不等式:(a2+b2)(x2+y2)≥(ax+by)2(a,b,x,y∈R);
(Ⅱ)若x2+y2=2,且|x|≠|y|,求
1
(x+y
)
2
 
+
1
(x-y
)
2
 
的最小值.

查看答案和解析>>

本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知矩阵A=
33
cd
,若矩阵A属于特征值6的一个特征向量为
α
=
1
1
,属于特征值1的一个特征向量为
β
=
&-2

(Ⅰ)求矩阵A;
(Ⅱ)判断矩阵A是否可逆,若可逆求出其逆矩阵A-1
(2)选修4-4:坐标系与参数方程
已知直线的极坐标方程为ρsin(θ+
π
4
)=
2
2
,圆M的参数方程为
x=2cosθ
y=-2+2sinθ
(其中θ为参数).
(Ⅰ)将直线的极坐标方程化为直角坐标方程;
(Ⅱ)求圆M上的点到直线的距离的最小值.
(3)选修4-5:不等式选讲,设函数f(x)=|x-1|+|x-a|;
(Ⅰ)若a=-1,解不等式f(x)≥3;
(Ⅱ)如果关于x的不等式f(x)≤2有解,求a的取值范围.

查看答案和解析>>


同步练习册答案