题目列表(包括答案和解析)
(本小题满分14分)
已知函数![]()
(Ⅰ)当
求函数
的最小值
(Ⅱ)若对任意
,都有
>0恒成立,试求实数a的取值范围.
(本小题满分14分)
已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.
(1)当b=0时,若对
x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;
(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1, f (x1))和(x2, g(x2)),其中x1>0.
①求证:x1>1>x2;
②若当x≥x1时,关于x的不等式ax2-x+xe
+1≤0恒成立,求实数a的取值范围.
(本小题满分14分)已知数列
是各项均不为
的等差数列,公差为
,
为其前
项和,且满足
,
.数列
满足
,
为数列
的前
项和.
(1)求
、
和
;
(2)若对任意的
,不等式
恒成立,求实数
的取值范围;
(3)是否存在正整数![]()
,使得
成等比数列?若存在,求出所有
的值;若不存在,请说明理由.
(本小题满分14分)
已知函数![]()
(Ⅰ)当
求函数
的最小值;
(Ⅱ)若对任意
,都有
>0恒成立,试求实数a的取值范围.
(本小题满分14分)
已知函数![]()
(Ⅰ)当
求函数
的最小值
(Ⅱ)若对任意
,都有
>0恒成立,试求实数a的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com