题目列表(包括答案和解析)
(本小题满分12分)设某物体一天中的温度
是时间
的函数:
,其中温度的单位是
,时间单位是小时,
表示12:00,
取正值表示12:00以后.若测得该物体在8:00的温度是
,12:00的温度为
,13:00的温度为
,且已知该物体的温度在8:00和16:00有相同的变化率.
(1)写出该物体的温度
关于时间
的函数关系式;
(2)该物体在10:00到14:00这段时间中(包括10:00和14:00),何时温度最高,并求出最高温度;
(3)如果规定一个函数
在区间
上的平均值为
,求该物体在8:00到16:00这段时间内的平均温度.
(本小题满分14分)已知函数![]()
的图像过点
,且在该点的切线方程为
.
(Ⅰ)若
在
上为单调增函数,求实数
的取值范围;
(Ⅱ)若函数
恰好有一个零点,求实数
的取值范围.
(本小题满分14分)已知函数
=
+
有如下性质:如果常数
>0,那么该
函数在
0,![]()
上是减函数,在![]()
,+∞
上是增函数.
(1)如果函数
=
+
(
>0)的值域为
6,+∞
,求
的值;
(2)研究函数
=
+
(常数
>0)在定义域内的单调性,并说明理由;
(3)对函数
=
+
和
=
+
(常数
>0)作出推广,使它们都是你所推广的
函数的特例.
(4)(理科生做)研究推广后的函数的单调性(只须写出结论,不必证明),并求函数
=
+
(
是正整数)在区间[
,2]上的最大值和最小值(可利用你
的研究结论).
(本小题满分14分)
小张经营某一消费品专买店,已知该消费品的进价为每件40元,该店每月销售量
(百件)与销售单价
(元/件)之间的关系用下图的一折线表示,职工每人每月工资为1000元,该店还应交付的其它费用为每月10000元.
(1)把
表示为
的函数;
(2)当销售价为每件50元时,该店正好收支平衡,求该店的职工人数;
(3)若该店只有20名职工,问销售单价定为多少元时,该专卖店月利润最大?(利润=收入—支出)
![]()
(本小题满分14分)
已知函数f(x)=-x3+3x2+9x+a.
(I)求f(x)的单调递减区间;
(II)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com