题目列表(包括答案和解析)
(本小题满分14分)如图9-3,已知:射线OA为y=kx(k>0,x>0),射线OB为y= -kx(x>0),动点P(x,y)在∠AOx的内部,PM⊥OA于M,PN⊥OB于N,四边形ONPM的面积恰为k.
(1)当k为定值时,动点P的纵坐标y是横坐标x的函数,求这个函数y=f(x)的解析式;
(2)根据k的取值范围,确定y=f(x)的定义域.
(本小题满分14分)已知点P(2,0),及圆C:x2+y2-6x+4y+4=0.
(1)当直线l过点P且与圆心C的距离为1时,求直线l的方程;
(2)设过点P的直线与圆C交于A、B两点,当|AB|=4,求以线段AB为直径的圆的方程.
(本小题满分14分)
已知以点P为圆心的圆过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C、D,且|CD|=
,
(1) 求直线CD的方程;
(2)求圆P的方程;
(3)设点Q在圆P上,试探究使△QAB的面积为8的点Q共有几个?证明你的结论.
(本小题满分14分)
已知以点P为圆心的圆过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C、D,且|CD|=
,
(1) 求直线CD的方程;
(2)求圆P的方程;
(3)设点Q在圆P上,试探究使△QAB的面积为8的点Q共有几个?证明你的结论.
(本小题满分14分)
已知两点M(-1,0),N(1,0),且点P使
,
,
成公差小于零的等差数列。
(1)点P的轨迹是什么曲线?
(2)若点P的坐标为(x0,y0),记为θ为
的夹角,求tanθ.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com