解:(1)∵P点斜坐标为. ∴=2e1-2e2. ∴||2=(2e1-2e2)2=8-8e1·e2=8-8×cos60°=4. ∴||=2.即|OP|=2. (2)设圆上动点M的斜坐标为(x.y).则=xe1+ye2. ∴(xe1+ye2)2=1. ∴x2+y2+2xye1·e2=1. ∴x2+y2+xy=1. 故所求方程为x2+y2+xy=1. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,在平面斜坐标系xOy中,∠xOy=60°,平面上任一点P关于斜坐标系的斜坐标是这样定义的:
OP
=xe1+ye2(其中e1、e2分别为与x轴、y轴同方向的单位向量),则P点斜坐标为(x,y).
(1)若P点斜坐标为(2,-2),求P到O的距离|PO|;
(2)求以O为圆心,1为半径的圆在斜坐标系xOy中的方程.

查看答案和解析>>

如图,在平面斜坐标系xOy中,∠xOy=60°,平面上任一点P关于斜坐标系的斜坐标是这样定义的:若=xe1+ye2(其中e1e2分别为与x轴、y轴同方向的单位向量),则P点斜坐标为(xy).

(1)若P点斜坐标为(2,-2),求PO的距离|PO|;

(2)求以O为圆心,1为半径的圆在斜坐标系xOy中的方程.

查看答案和解析>>

如图,在平面斜坐标系xOy中,∠xOy=60°,平面上任一点P关于斜坐标系的斜坐标是这样定义的:若=xe1+ye2(其中e1、e2分别为与x轴、y轴同方向的单位向量),则P点斜坐标为(x,y).

(1)若P点斜坐标为(2,-2),求P到O的距离|PO|;

(2)求以O为圆心,1为半径的圆在斜坐标系xOy中的方程.

查看答案和解析>>

如图,在平面斜坐标系xOy中,∠xOy=60°,平面上任一点P关于斜坐标系的斜坐标是这样定义的:
=xe1+ye2(其中e1、e2分别为与x轴、y轴同方向的单位向量),则P点斜坐标为(x,y).
(1)若P点斜坐标为(2,-2),求P到O的距离|PO|;
(2)求以O为圆心,1为半径的圆在斜坐标系xOy中的方程.

查看答案和解析>>

如图,在平面斜坐标系xOy中,∠xOy=60°,平面上任一点P关于斜坐标系的斜坐标是这样定义的:
=xe1+ye2(其中e1、e2分别为与x轴、y轴同方向的单位向量),则P点斜坐标为(x,y).
(1)若P点斜坐标为(2,-2),求P到O的距离|PO|;
(2)求以O为圆心,1为半径的圆在斜坐标系xOy中的方程.

查看答案和解析>>


同步练习册答案