题目列表(包括答案和解析)
(本题18分)已知数列
的前
项和
和通项
满足
(
是常数且
,
).设函数
.
(1)求数列
的通项公式;
(2)当
时,求
的前
项和
;
(3)设
,是否存在正整数
,使
对
都成立?若存在,求出
的值;若不存在,请说明理由.
.(本题满分18分)
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
设二次函数
,对任意实数
,有
恒成立;数列
满足
.
(1)求函数
的解析式和值域;
(2)试写出一个区间
,使得当
时,数列
在这个区间上是递增数列,
并说明理由;
(3)已知
,是否存在非零整数
,使得对任意
,都有
![]()
恒成立,若存在,
求之;若不存在,说明理由.
(本题满分18分)对于定义域为D的函数,如果存在区间,同时满足:
①在内是单调函数;
②当定义域是时,的值域也是.
则称是该函数的“和谐区间”.
(1)证明:是函数的一个“和谐区间”.
(2)求证:函数不存在“和谐区间”.
(3)已知:函数()有“和谐区间”,当变化时,求出的最大值.
(本题满分18分)对于定义域为D的函数,如果存在区间,同时满足:
①在内是单调函数;
②当定义域是时,的值域也是.
则称是该函数的“和谐区间”.
(1)证明:是函数的一个“和谐区间”.
(2)求证:函数不存在“和谐区间”.
(3)已知:函数()有“和谐区间”,当变化时,求出的最大值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com