4.{x︱x=, n∈N, n≤5}用列举法表示为 . 查看更多

 

题目列表(包括答案和解析)

h(x)=x+
m
x
x∈[
1
4
,5]
,其中m是不等于零的常数,
(1)(理)写出h(4x)的定义域;
(文)m=1时,直接写出h(x)的值域;
(2)(文、理)求h(x)的单调递增区间;
(3)已知函数f(x)(x∈[a,b]),定义:f1(x)=minf(t)|a≤t≤x(x∈[a,b]),f2(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函数f(x)在D上的最小值,maxf(x)|x∈D表示函数f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],则f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
(理)当m=1时,设M(x)=
h(x)+h(4x)
2
+
|h(x)-h(4x)|
2
,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范围;
(文)当m=1时,|h1(x)-h2(x)|≤n恒成立,求n的取值范围.

查看答案和解析>>

(1)对于定义在(0,+∞)上的函数f(x),满足x(x)+2f(x)<0,求证:函数y=x2f(x)在(0,+∞)上是减函数;

(2)请你认真研读(1)中命题并联系以下命题:若f(x)是定义在(0,+∞)上的可导函数,满足x(x)+f(x)<0,则y=xf(x)是(0,+∞)上的减函数.然后填空建立一个普遍化的命题:

设f(x)是定义在(0,+∞)上的可导函数,n∈N+,若________×(x)+n×f(x)<0,则________是(0,+∞)上的减函数.

注:命题的普遍化就是从考虑一个对象过渡到考虑包含该对象的一个集合;或者从考虑一个较小的集合过渡到考虑包含该较小集合的更大集合.

(3)证明(2)中建立的普遍化命题.

查看答案和解析>>

令an为(1+x)n+1的展开式中含xn-1项的系数,则数列{
1
an
}的前n项和为(  )
A、
n(n+3)
2
B、
n(n+1)
2
C、
n
n+1
D、
2n
n+1

查看答案和解析>>

已知函数f(x)=x+
t
x
(t>0)
,过点P(1,0)作曲线y=f(x)的两条切线PM,PN,切点分别为M,N.
(1)当t=2时,求函数f(x)的单调递增区间;
(2)设|MN|=g(t),试求函数g(t)的表达式;
(3)在(2)的条件下,若对任意的正整数n,在区间[2,n+
64
n
]
内,总存在m+1个数a1,a2,…,am,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求m的最大值.

查看答案和解析>>

若(1+x)n+1的展开式中含xn-1的系数为an,则
1
a1
+
1
a2
+…+
1
an
的值为(  )
A、
n
n+1
B、
2n
n+1
C、
n(n+1)
2
D、
n(n+3)
2

查看答案和解析>>


同步练习册答案