证明:(1)因为.平面. 所以平面.平面. 则.又. 所以平面. (2)连结交于点O.连结.O为 的中点.由(1)知. 又为正三角形.所以为的中点. 为的中位线.故 又平面.平面. 所以平面. 查看更多

 

题目列表(包括答案和解析)

如图⊥平面,过

的垂线,垂足为,过的垂线,垂足为

,求证。以下是证明过程:

要证                     

只需证  ⊥平面

只需证  (因为

只需证  ⊥平面

只需证       ①    (因为

只需证  ⊥平面

只需证       ②    (因为

由只需证  ⊥平面可知上式成立

所以

把证明过程补充完整①                           

 

查看答案和解析>>

如图SA⊥平面ABC,AB⊥BC,过A做SB的垂线,垂足为E,过E做SC的垂线,垂足为F,求证AF⊥SC.以下是证明过程:
要证AF⊥SC
只需证  SC⊥平面AEF
只需证  AE⊥SC(因为EF⊥SC)
只需证  AE⊥平面SBC
只需证
(因为AE⊥SB)
只需证  BC⊥平面SAB
只需证
(因为AB⊥BC)
由只需证  SA⊥平面ABC可知上式成立
所以AF⊥SC
把证明过程补充完整①
AE⊥BC
AE⊥BC
BC⊥SA
BC⊥SA

查看答案和解析>>

如图SA⊥平面ABC,AB⊥BC,过A做SB的垂线,垂足为E,过E做SC的垂线,垂足为F,求证AF⊥SC.以下是证明过程:
要证AF⊥SC
只需证 SC⊥平面AEF
只需证 AE⊥SC(因为EF⊥SC)
只需证 AE⊥平面SBC
只需证________(因为AE⊥SB)
只需证 BC⊥平面SAB
只需证________(因为AB⊥BC)
由只需证 SA⊥平面ABC可知上式成立
所以AF⊥SC
把证明过程补充完整①________②________.

查看答案和解析>>

请先阅读:

设平面向量=(a1,a2),=(b1,b2),且的夹角为è,

因为=||||cosè,

所以≤||||.

当且仅当è=0时,等号成立.

(I)利用上述想法(或其他方法),结合空间向量,证明:对于任意a1,a2,a3,b1,b2,b3∈R,都有成立;

(II)试求函数的最大值.

查看答案和解析>>

请先阅读:
设平面向量=(a1,a2),=(b1,b2),且的夹角为θ,
因为=||||cosθ,
所以≤||||.

当且仅当θ=0时,等号成立.
(I)利用上述想法(或其他方法),结合空间向量,证明:对于任意a1,a2,a3,b1,b2,b3∈R,都有成立;
(II)试求函数的最大值.

查看答案和解析>>


同步练习册答案