题目列表(包括答案和解析)
(本小题12分)
若
是定义在
上的增函数,且对一切
,满足
.
(1)求
的值
(2)若
,解不
等式
.
(本小题12分)若存在实常数
和
,使得函数
和
对其定义域上的任意实数
分别满足
和
,则称直线
为
和
的“隔离直线”.已知
,
(其中
为自然对数的底数).
(1) 判断函数
的零点个数并证明你的结论;
(2) 函数
和
是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
(本小题12分)
若
是定义在
上的增函数,且对一切
,满足
.
(1)求
的值;
(2)若
,解不等式
.
(本小题满分12分)对于定义域为D的函数
,若同时满足下列条件:①
在D内单调递增或单调递减;②存在区间[
]
,使
在[
]上的值域为[
];那么把
(
)叫闭函数。(1)求闭函数
符合条件②的区间[
];
(2)判断函数
是否为闭函数?并说明理由;
(3)判断函数
是否为闭函数?若是闭函数,求实数
的取值范围。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com