47.已知 (1)求的定义域;(2)证明为奇函数;(3)求使>0成立的x的取值范围. D.函数与方程 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)的定义域为R,对任意的x1,x2都满足f(x1+x2)=f(x1)+f(x2),当x<0时,f(x)<0.
(1)判断并证明f(x)的单调性和奇偶性
(2)是否存在这样的实数m,当θ∈[0,
π
2
]
时,使不等式f[sin2θ-(2+m)(sinθ+cosθ)-
4
sinθ+cosθ
]+f(3+2m)>0

对所有θ恒成立,如存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

已知函数f(x)=
a
2
-
2x
2x+1
(a为常数)
(1)是否存在实数a,使函数f(x)是R上的奇函数,若不存在,说明理由,若存在,求函数f(x)的值域;
(2)探索函数f(x)的单调性,并利用定义加以证明.

查看答案和解析>>

已知f(x)=loga
1+x1-x
,(a>0,且a≠1).
(1)求f(x)的定义域.   
(2)证明f(x)为奇函数.
(3)求使f(x)>0成立的x的取值范围.

查看答案和解析>>

已知f(x)的定义域为R,且当x,y∈R时,恒有f(x+y)=f(x)+f(y).
(1)求f(0)的值.
(2)证明:f(x)是奇函数.
(3)如果x>0时,f(x)<0,且f(1)=-
12
,试求使f(x2-2ax-1)≤1对x∈[2,4]恒成立的实数a的取值范围.

查看答案和解析>>

已知f(x)=loga
x+1x-1
(a>0且a≠1).
(1)判断函数f(x)的奇偶性,并证明;
(2)若a>1,用单调性定义证明函数f(x)在区间(1,+∞)上单调递减;
(3)是否存在实数a,使得f(x)的定义域为[m,n]时,值域为[1-logan,1-logam],若存在,求出实数a的取值范围;若不存在,则说明理由.

查看答案和解析>>


同步练习册答案