16. 设 (1) 求证: (2) 求值: 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)  设函数.

(Ⅰ)当时,求函数的单调区间和极大值点;

(Ⅱ)已知,若函数的图象总在直线的下方,求的取值范围;

(Ⅲ)记为函数的导函数.若,试问:在区间上是否存在)个正数,使得成立?请证明你的结论.

 

查看答案和解析>>

(本小题满分14分)

设函数

(1)用定义证明:函数是R上的增函数;(6分)

(2)证明:对任意的实数t,都有;(4分)

(3)求值:。(4分)

 

查看答案和解析>>

.(本小题满分14分)

设函数.其中为常数.

(Ⅰ)证明:对任意的图象恒过定点;

(Ⅱ) 设,若为定义域上的增函数,求的最大值;

(Ⅲ)当时,函数是否存在极值?若存在,求出极值;若不存在,说明理由.

 

查看答案和解析>>

(本小题满分14分)

设函数有两个极值点,且

(I)求的取值范围,并讨论的单调性;

(II)证明:            

 

查看答案和解析>>

(本小题满分14分)

a≥0,f (x)=x-1-ln2 x+2a ln xx>0).

(Ⅰ)令Fx)=xf'x),讨论Fx)在(0.+∞)内的单调性并求极值;

(Ⅱ)求证:当x>1时,恒有x>ln2x-2a ln x+1.

 

 

查看答案和解析>>


同步练习册答案