题目列表(包括答案和解析)
本小题满分12分
的内切圆与三边
的切点分别为
,已知
,内切圆圆心
,设点
的轨迹为
.![]()
(1)求
的方程;
(2)过点
的动直线
交曲线
于不同的两点
(点
在
轴的上方),问在
轴上是否存在一定点
(
不与
重合),使
恒成立,若存在,试求出
点的坐标;若不存在,说明理由.
本小题满分12分)
如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D.![]()
(I)设
,求
与
的比值;
(II)当e变化时,是否存在直线l,使得BO∥AN,并说明理由
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com