已知圆与圆. (1) 求证两圆相交, (2) 求两圆公共弦所在直线的方程, (3) 求过两圆的交点且圆心在直线上的圆的方程. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

已知斜率为1的直线1与双曲线C:相交于B、D两点,且BD的中点为M(1.3)

(Ⅰ)(Ⅰ)求C的离心率;

(Ⅱ)(Ⅱ)设C的右顶点为A,右焦点为F,|DF|·|BF|=17证明:过A、B、D三点的圆与x轴相切。

查看答案和解析>>

(本小题满分12分)

已知斜率为1的直线1与双曲线C:相交于B、D两点,且BD的中点为M(1.3)

(Ⅰ)(Ⅰ)求C的离心率;

(Ⅱ)(Ⅱ)设C的右顶点为A,右焦点为F,|DF|·|BF|=17证明:过A、B、D三点的圆与x轴相切。

查看答案和解析>>

(本小题满分12分)

已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于两点。

(I)求曲线的方程;

(II)试证明:在轴上存在定点,使得总能被轴平分

 

查看答案和解析>>

(本小题满分12分)

    如题21图,已知离心率为的椭圆过点M(2,1),O为坐标原点,平行于OM的直线交椭圆C于不同的两点A、B。

    (1)求椭圆C的方程。

    (2)证明:直线MA、MB与x轴围成一个等腰三角形。

 

 

 

 

 

 

 

查看答案和解析>>

(本小题满分12分)

如题21图,已知离心率为的椭圆过点M(2,1),O为坐标原点,平行于OM的直线交椭圆C于不同的两点A、B。

(1)求面积的最大值;

(2)证明:直线MA、MB与x轴围成一个等腰三角形。

 

 

 

查看答案和解析>>


同步练习册答案