9.A 解析:f(1.5)=f=f(1.4)+2=--=f对. f(5.1)=f=2f(4.1)=24·f对. f(5.6)=f=f(5.5)+2=f对.故选A. 查看更多

 

题目列表(包括答案和解析)

精英家教网读图分析解答:设定义在闭区间[-4,4]上的函数y=f(x)的图象如图所示(图中坐标点都是实心点),完成以下几个问题:
(1)x∈[-2,3]时,y的取值范围是
 

(2)该函数的值域为
 

(3)若y=f(x)的定义域为[-4,4],则函数y=f(x+1)的定义域为
 

(4)写出该函数的一个单调增区间为
 

(5)使f(x)=3(x∈[-4,4])的x的值有
 
个.
(6)函数y=f(x)是区间x∈[-4,4]的
 
函数.(填“奇”;“偶”或“非奇非偶”)
(7)若方程f(x)=5-3a在区间[-4,4]上有且只有三个解,求f(a)的取值范围.

查看答案和解析>>

4. m>2或m<-2 解析:因为f(x)=在(-1,1)内有零点,所以f(-1)f(1)<0,即(2+m)(2-m)<0,则m>2或m<-2

随机变量的所有等可能取值为1,2…,n,若,则(    )

A. n=3        B.n=4          C. n=5        D.不能确定

5.m=-3,n=2 解析:因为的两零点分别是1与2,所以,即,解得

6.解析:因为只有一个零点,所以方程只有一个根,因此,所以

查看答案和解析>>

读图分析解答:设定义在闭区间[-4,4]上的函数y=f(x)的图象如图所示(图中坐标点都是实心点),完成以下几个问题:
(1)x∈[-2,3]时,y的取值范围是________.
(2)该函数的值域为________.
(3)若y=f(x)的定义域为[-4,4],则函数y=f(x+1)的定义域为________.
(4)写出该函数的一个单调增区间为________.
(5)使f(x)=3(x∈[-4,4])的x的值有________个.
(6)函数y=f(x)是区间x∈[-4,4]的________函数.(填“奇”;“偶”或“非奇非偶”)
(7)若方程f(x)=5-3a在区间[-4,4]上有且只有三个解,求f(a)的取值范围.

查看答案和解析>>

某地西红柿上市时间仅能持续5个月,预测上市初期和后期会因供不应求使价格呈连续上涨势态,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①f(x)=a•bx,②f(x)=ax2+bx+1,③f(x)=x(x-b)2+a,(以上三式中a,b均是不为零的常数,且b>1)
(1)为了准确研究其价格走势,应选择哪种价格模拟函数,为什么?
(2)若f(0)=4,f(2)=6,求出所选函数f(x)的解析式(注:函数的定义域是[0,5]).其中x=0表示8月1日,x=1表示9月1日,…,以此类推;为保证该地的经济收益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该西红柿将在哪几个月份内价格下跌.

查看答案和解析>>

某地西红柿上市时间仅能持续5个月,预测上市初期和后期会因供不应求使价格呈连续上涨势态,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①f(x)=a•bx,②f(x)=ax2+bx+1,③f(x)=x(x-b)2+a,(以上三式中a,b均是不为零的常数,且b>1)
(1)为了准确研究其价格走势,应选择哪种价格模拟函数,为什么?
(2)若f(0)=4,f(2)=6,求出所选函数f(x)的解析式(注:函数的定义域是[0,5]).其中x=0表示8月1日,x=1表示9月1日,…,以此类推;为保证该地的经济收益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该西红柿将在哪几个月份内价格下跌.

查看答案和解析>>


同步练习册答案