题目列表(包括答案和解析)
(本题满分12分)已知函数
.
(1)判断f(x)的奇偶性,并说明理由;
(2)若方程
有解,求m的取值范围;
【解析】第一问利用函数的奇偶性的定义可以判定定义域和f(x)与f(-x)的关系从而得到结论。
第二问中,利用方程
有解,说明了参数m落在函数y=f(x)的值域里面即可。
(本题满分12分)已知函数
定义域是
,且
,
,当
时:
。
⑴ 判断
的奇偶性,并说明理由;
⑵ 求
在
上的表达式;
⑶ 是否存在正整数
,使得![]()
时,
有解,并说明理由。
(本小题满分12分)已知函数![]()
(I)若函数
在区间
上存在极值,求实数a的取值范围;
(II)当
时,不等式
恒成立,求实数k的取值范围.
(Ⅲ)求证:解:(1)
,其定义域为
,则
令
,
则
,
当
时,
;当
时,![]()
在(0,1)上单调递增,在
上单调递减,
即当
时,函数
取得极大值. (3分)
函数
在区间
上存在极值,
,解得
(4分)
(2)不等式
,即![]()
令![]()
(6分)
令
,则
,
,即
在
上单调递增, (7分)
,从而
,故
在
上单调递增, (7分)
(8分)
(3)由(2)知,当
时,
恒成立,即
,
令
,则
, (9分)
![]()
(10分)
以上各式相加得,
![]()
即
,
即
(12分)
。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com