15. (1)计算, (2)设求的值. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)设数列的前项和为,对一切,点都在函数 的图象上.

(Ⅰ)求的值,猜想的表达式,并用数学归纳法证明;

(Ⅱ)将数列依次按1项、2项、3项、4项循环地分为(),(),(),();(),(),(),();(),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,求的值;

查看答案和解析>>

某学校课题小组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
数学成绩 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理成绩 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
若单科成绩85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的2×2列联表(单位:人):
数学成绩优秀 数学成绩不优秀 合计
物理成绩优秀
物理成绩不优秀
合计 20
(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?
(3)若从这20个人中抽出1人来了解有关情况,求抽到的学生数学成绩与物理成绩至少有一门不优秀的概率.
参考数据:
①假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:
y1 y2 合计
x1 a b a+b
x2 c d c+d
合计 a+c b+d a+b+c+d
则随机变量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d为样本容量;
②独立检验随机变量K2的临界值参考表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

(本小题满分14分)

为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

 

喜爱打篮球

不喜爱打篮球

合计

男生

 

5

 

女生

10

 

 

合计

 

 

50

已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为

(1)请将上面的列联表补充完整(不用写计算过程);

(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;

(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为,求的分布列与期望.

下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 (参考公式:,其中)

 

查看答案和解析>>

(本小题满分14分)(注意:在试题卷上作答无效)
设数列的前项和为,对一切,点都在函数 的图象上.
(Ⅰ)求及数列的通项公式
(Ⅱ) 将数列依次按1项、2项、3项、4项循环地分为(),(),(),();(),(),(),();(),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,求的值;
(Ⅲ)令),求证:

查看答案和解析>>

(本小题满分14分)(注意:在试题卷上作答无效)

设数列的前项和为,对一切,点都在函数 的图象上.

 (Ⅰ)求及数列的通项公式

 (Ⅱ) 将数列依次按1项、2项、3项、4项循环地分为(),(),(),();(),(),(),();(),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,求的值;

(Ⅲ)令),求证:

 

查看答案和解析>>


同步练习册答案